Update README.md
Browse files
README.md
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
widget:
|
| 4 |
-
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?"
|
| 5 |
example_title: "Dialog example 1"
|
| 6 |
-
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм"
|
| 7 |
example_title: "Dialog example 2"
|
| 8 |
-
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?"
|
| 9 |
example_title: "Dialog example 3"
|
| 10 |
---
|
| 11 |
|
|
@@ -33,12 +33,11 @@ The performance of the model on validation split (dataset will be posted soon) (
|
|
| 33 |
How to use:
|
| 34 |
|
| 35 |
```python
|
| 36 |
-
pip install transformers
|
| 37 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 38 |
import torch
|
|
|
|
|
|
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-large')
|
| 40 |
model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-large')
|
| 41 |
-
model.cuda()
|
| 42 |
inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt')
|
| 43 |
with torch.inference_mode():
|
| 44 |
logits = model(**inputs).logits
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
widget:
|
| 4 |
+
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?"
|
| 5 |
example_title: "Dialog example 1"
|
| 6 |
+
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм"
|
| 7 |
example_title: "Dialog example 2"
|
| 8 |
+
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?"
|
| 9 |
example_title: "Dialog example 3"
|
| 10 |
---
|
| 11 |
|
|
|
|
| 33 |
How to use:
|
| 34 |
|
| 35 |
```python
|
|
|
|
|
|
|
| 36 |
import torch
|
| 37 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 38 |
+
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-large')
|
| 40 |
model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-large')
|
|
|
|
| 41 |
inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt')
|
| 42 |
with torch.inference_mode():
|
| 43 |
logits = model(**inputs).logits
|