File size: 2,000 Bytes
193a28c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from functools import partial

from litgpt.tokenizer import Tokenizer
from litdata import optimize, TokensLoader, StreamingDataset
from transformers import AutoTokenizer

from utils import tokenize_fn
from core_base_datasets import core_base_datasets
from core_instruct_datasets import core_instruct_datasets


#
# optimize datasets
#
for i, (block_size, subchunk_size) in enumerate([(8192, 2000)]):
    chunk_size = block_size * subchunk_size
    output_dir = f'../core-data-{i}-{block_size}-{subchunk_size}'

    outputs = optimize(
        fn=partial(
            tokenize_fn,
            hf_tokenizer=AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True),
            tokenizer=Tokenizer('..'),
        ),
        inputs=core_base_datasets + core_instruct_datasets,
        output_dir=output_dir,
        chunk_size=chunk_size, # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
        num_workers=32,
        reorder_files=False,
        ## This is important to inform LitData that we are encoding contiguous 1D array (tokens).
        ## LitData skips storing metadata for each sample e.g all the tokens are concatenated to form one large tensor.
        # item_loader=TokensLoader(block_size=block_size),
    )

#
# total number of chunks in datasets
#
for i, (block_size, subchunk_size) in enumerate([(8192, 2000)]):
    chunk_size = block_size * subchunk_size
    input_dir = f'../core-data-{i}-{block_size}-{subchunk_size}'

    dataset = StreamingDataset(
        input_dir=input_dir,
        item_loader=TokensLoader(block_size=block_size),
    )

    print(f'{i=}, {block_size=}, {chunk_size=}, {len(dataset)=}, {len(dataset) * block_size=}')

    # total_tokens = sum(len(data) for data in dataset)
    # print(f'Total number of tokens in the optimized dataset {input_dir!r} is {total_tokens}')
    total_tokens = len(dataset) * block_size
    print(f'Total number of tokens in the optimized dataset {input_dir!r} is {total_tokens}')