--- license: bsd-3-clause base_model: LongSafari/hyenadna-medium-450k-seqlen-hf tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: hyenadna-medium-450k-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC results: [] --- # hyenadna-medium-450k-seqlen-hf_ft_BioS73_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [LongSafari/hyenadna-medium-450k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4797 - F1 Score: 0.8324 - Precision: 0.8063 - Recall: 0.8603 - Accuracy: 0.8151 - Auc: 0.8805 - Prc: 0.8644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.4819 | 0.3726 | 500 | 0.4409 | 0.8212 | 0.7769 | 0.8708 | 0.7976 | 0.8718 | 0.8657 | | 0.4306 | 0.7452 | 1000 | 0.4281 | 0.8181 | 0.8103 | 0.8261 | 0.8040 | 0.8826 | 0.8790 | | 0.4073 | 1.1177 | 1500 | 0.4115 | 0.8310 | 0.7977 | 0.8673 | 0.8118 | 0.8884 | 0.8864 | | 0.3903 | 1.4903 | 2000 | 0.4011 | 0.8345 | 0.8096 | 0.8610 | 0.8177 | 0.8902 | 0.8832 | | 0.3808 | 1.8629 | 2500 | 0.4221 | 0.8295 | 0.8075 | 0.8527 | 0.8129 | 0.8865 | 0.8788 | | 0.3713 | 2.2355 | 3000 | 0.4126 | 0.8305 | 0.8212 | 0.8401 | 0.8170 | 0.8959 | 0.8883 | | 0.3587 | 2.6080 | 3500 | 0.4023 | 0.8469 | 0.7937 | 0.9078 | 0.8248 | 0.8936 | 0.8857 | | 0.3362 | 2.9806 | 4000 | 0.4117 | 0.8489 | 0.7852 | 0.9239 | 0.8245 | 0.8925 | 0.8829 | | 0.3075 | 3.3532 | 4500 | 0.4235 | 0.8295 | 0.8120 | 0.8478 | 0.8140 | 0.8946 | 0.8877 | | 0.319 | 3.7258 | 5000 | 0.4154 | 0.8497 | 0.8096 | 0.8939 | 0.8312 | 0.8959 | 0.8868 | | 0.2986 | 4.0984 | 5500 | 0.4481 | 0.8377 | 0.8028 | 0.8757 | 0.8189 | 0.8929 | 0.8835 | | 0.2712 | 4.4709 | 6000 | 0.4398 | 0.8281 | 0.8005 | 0.8575 | 0.8099 | 0.8833 | 0.8708 | | 0.2819 | 4.8435 | 6500 | 0.4465 | 0.8324 | 0.8189 | 0.8464 | 0.8181 | 0.8904 | 0.8828 | | 0.245 | 5.2161 | 7000 | 0.4827 | 0.8294 | 0.8125 | 0.8471 | 0.8140 | 0.8853 | 0.8713 | | 0.2318 | 5.5887 | 7500 | 0.4797 | 0.8324 | 0.8063 | 0.8603 | 0.8151 | 0.8805 | 0.8644 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0