|
from dataclasses import dataclass |
|
from typing import Dict, List, Optional, Tuple, Union, Callable |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
|
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput |
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm |
|
from transformers import modeling_utils |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.utils import logging |
|
|
|
|
|
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel |
|
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead |
|
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler |
|
|
|
from .configuration_vibevoice import VibeVoiceConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: |
|
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"] |
|
|
|
@dataclass |
|
class VibeVoiceCausalLMOutputWithPast(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
diffusion_loss: Optional[torch.FloatTensor] = None |
|
speech_token_num: Optional[int] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
@dataclass |
|
class VibeVoiceGenerationOutput(ModelOutput): |
|
""" |
|
Output type for VibeVoice generation. |
|
|
|
Args: |
|
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
The generated sequences. |
|
speech_outputs (`List[torch.FloatTensor]`, *optional*): |
|
List of generated speech waveforms or latents for each speech segment. |
|
""" |
|
sequences: torch.LongTensor = None |
|
speech_outputs: Optional[List[torch.FloatTensor]] = None |
|
|
|
|
|
class SpeechConnector(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super().__init__() |
|
self.fc1 = nn.Linear(input_dim, output_dim) |
|
self.norm = LlamaRMSNorm(output_dim, eps=1e-6) |
|
self.fc2 = nn.Linear(output_dim, output_dim) |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.fc1(features) |
|
x = self.norm(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
|
|
class VibeVoicePreTrainedModel(PreTrainedModel): |
|
config_class = VibeVoiceConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_cache_class = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, VibeVoiceDiffusionHead): |
|
module.initialize_weights() |
|
return |
|
|
|
|
|
if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'): |
|
std = self.config.language_model_config.initializer_range |
|
elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'): |
|
std = self.config.decoder_config.initializer_range |
|
else: |
|
std = 0.02 |
|
|
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.weight.data.fill_(1.0) |
|
module.bias.data.zero_() |
|
|
|
|
|
class VibeVoiceModel(VibeVoicePreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if hasattr(config, 'torch_dtype') and config.torch_dtype is not None: |
|
if isinstance(config.torch_dtype, str): |
|
dtype = getattr(torch, config.torch_dtype) |
|
else: |
|
dtype = config.torch_dtype |
|
else: |
|
dtype = torch.float32 |
|
|
|
|
|
lm_config = config.decoder_config |
|
self.language_model = AutoModel.from_config(lm_config) |
|
|
|
|
|
self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype) |
|
self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype) |
|
|
|
self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype) |
|
self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype) |
|
|
|
|
|
self.register_buffer('speech_scaling_factor', torch.tensor(float('nan'))) |
|
self.register_buffer('speech_bias_factor', torch.tensor(float('nan'))) |
|
|
|
|
|
self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype) |
|
|
|
|
|
self.noise_scheduler = DPMSolverMultistepScheduler( |
|
num_train_timesteps=config.diffusion_head_config.ddpm_num_steps, |
|
beta_schedule=config.diffusion_head_config.ddpm_beta_schedule, |
|
prediction_type=config.diffusion_head_config.prediction_type |
|
) |
|
|
|
def get_input_embeddings(self): |
|
if hasattr(self.language_model, 'embed_tokens'): |
|
|
|
return self.language_model.embed_tokens |
|
|
|
for name, attr in self.language_model.fullmap.items(): |
|
if attr.orig_name == 'embed_tokens.weight': |
|
return getattr(self.language_model, name) |
|
assert False, 'should not arrive here' |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.embed_tokens = value |
|
|
|
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None): |
|
"""Set the speech tokenizers used for encoding and decoding speech.""" |
|
self.acoustic_tokenizer = acoustic_tokenizer |
|
self.semantic_tokenizer = semantic_tokenizer |
|
|
|
|
|
if self.acoustic_tokenizer is not None: |
|
self.acoustic_tokenizer.eval() |
|
|
|
if self.semantic_tokenizer is not None: |
|
self.semantic_tokenizer.eval() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.language_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
if not return_dict: |
|
return outputs |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = VibeVoiceModel(config) |
|
self.vocab_size = config.decoder_config.vocab_size |
|
self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_decoder(self, decoder): |
|
self.model.language_model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model.language_model |
|
|
|
def tie_weights(self): |
|
""" |
|
Tie the weights between the input embeddings and the output embeddings. |
|
""" |
|
if getattr(self.config.decoder_config, 'tie_word_embeddings', False): |
|
|
|
|
|
|
|
output_embeddings = self.get_output_embeddings() |
|
input_embeddings = self.get_input_embeddings() |
|
if hasattr(input_embeddings, 'weight'): |
|
output_embeddings.weight = input_embeddings.weight |
|
else: |
|
|
|
output_embeddings.weight = input_embeddings |
|
|
|
if getattr(output_embeddings, "bias", None) is not None: |
|
output_embeddings.bias.data = nn.functional.pad( |
|
output_embeddings.bias.data, |
|
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]), |
|
"constant", |
|
0, |
|
) |
|
print("✅ Tied input and output embeddings using standard assignment.") |
|
else: |
|
print("ℹ️ tie_word_embeddings is False, not tying weights.") |
|
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
|
|
|
self.lm_head = new_embeddings |
|
|
|
def forward_speech_features( |
|
self, |
|
speech_tensors=None, |
|
speech_masks=None, |
|
speech_type="audio", |
|
return_unmask=False |
|
): |
|
if speech_tensors is None: |
|
|
|
vae_dim = self.config.acoustic_tokenizer_config.vae_dim |
|
audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight) |
|
connect_features = self.model.acoustic_connector(audio_features) |
|
return audio_features, connect_features |
|
else: |
|
with torch.no_grad(): |
|
if speech_type == "audio": |
|
with torch.no_grad(): |
|
frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0] |
|
audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0] |
|
|
|
elif speech_type == "vae": |
|
|
|
vae_dim = self.config.acoustic_tokenizer_config.vae_dim |
|
speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim) |
|
|
|
|
|
batch_size = speech_mode.size(0) |
|
value = self.model.acoustic_tokenizer.fix_std / 0.8 |
|
std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value |
|
std = std.view(-1, *[1] * (speech_mode.dim() - 1)) |
|
audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode) |
|
else: |
|
raise NotImplementedError(f"Speech type {speech_type} not implemented") |
|
|
|
if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor): |
|
scaling_factor = 1. / audio_tokens[speech_masks].flatten().std() |
|
bias_factor = -audio_tokens[speech_masks].flatten().mean() |
|
|
|
|
|
if dist.is_available() and dist.is_initialized(): |
|
dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM) |
|
dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM) |
|
world_size = dist.get_world_size() |
|
self.model.speech_scaling_factor.copy_(scaling_factor / world_size) |
|
self.model.speech_bias_factor.copy_(bias_factor / world_size) |
|
print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True) |
|
else: |
|
|
|
self.model.speech_scaling_factor.copy_(scaling_factor) |
|
self.model.speech_bias_factor.copy_(bias_factor) |
|
print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True) |
|
|
|
audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor |
|
|
|
connect_features = self.model.acoustic_connector(audio_features) |
|
if return_unmask: |
|
return audio_features, connect_features |
|
return audio_features[speech_masks], connect_features[speech_masks] |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
speech_tensors: Optional[torch.FloatTensor] = None, |
|
speech_masks: Optional[torch.BoolTensor] = None, |
|
speeches_loss_input: Optional[torch.FloatTensor] = None, |
|
speech_semantic_tensors: Optional[torch.FloatTensor] = None, |
|
acoustic_input_mask: Optional[torch.BoolTensor] = None, |
|
acoustic_loss_mask: Optional[torch.BoolTensor] = None, |
|
ddpm_batch_mul: int = 1, |
|
**kwargs: Optional[Dict[str, Union[torch.Tensor, str]]], |
|
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
x = self.get_input_embeddings()(input_ids) |
|
|
|
semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors) |
|
if speeches_loss_input is not None: |
|
|
|
speech_all_features, speech_all_connect_features = self.forward_speech_features( |
|
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None, |
|
speech_masks=speech_masks, |
|
speech_type=kwargs.get("speech_type", "audio"), |
|
return_unmask=True |
|
) |
|
if speech_tensors is not None: |
|
if semantic_speech_all_connect_features is not None: |
|
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks] |
|
else: |
|
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] |
|
speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] |
|
speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks] |
|
else: |
|
speech_features, speech_connect_features = self.forward_speech_features( |
|
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None, |
|
speech_masks=speech_masks, |
|
speech_type=kwargs.get("speech_type", "audio"), |
|
) |
|
if speech_tensors is not None: |
|
x[acoustic_input_mask] = speech_connect_features |
|
|
|
outputs = self.model( |
|
input_ids=None, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=x, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=False, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
|
|
pass |
|
|
|
|
|
diffusion_loss = None |
|
|
|
if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0: |
|
condition_features = hidden_states[acoustic_loss_mask] |
|
|
|
speech_len, latent_size = speech_features.shape |
|
|
|
noise = torch.randn( |
|
(speech_len * ddpm_batch_mul, latent_size), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype |
|
) |
|
|
|
timesteps = torch.multinomial( |
|
torch.ones(self.config.diffusion_head_config.ddpm_num_steps), |
|
speech_len * ddpm_batch_mul, |
|
replacement=True, |
|
).to(hidden_states.device) |
|
|
|
speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0) |
|
condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0) |
|
|
|
noisy_speech_features = self.model.noise_scheduler.add_noise( |
|
speech_features_repeated, noise, timesteps |
|
) |
|
|
|
model_output = self.model.prediction_head( |
|
noisy_speech_features, |
|
timesteps.type_as(x), |
|
condition_features_repeated |
|
) |
|
|
|
prediction_type = self.config.diffusion_head_config.prediction_type |
|
if prediction_type == "epsilon": |
|
target_for_loss = noise |
|
elif prediction_type == "v_prediction": |
|
target_for_loss = self.model.noise_scheduler.get_velocity( |
|
speech_features_repeated, noise, timesteps |
|
) |
|
else: |
|
raise NotImplementedError(f"Prediction type {prediction_type} not implemented") |
|
|
|
diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum') |
|
if latent_size > 0 and ddpm_batch_mul > 0: |
|
diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul |
|
else: |
|
diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device) |
|
|
|
else: |
|
|
|
|
|
diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0 |
|
diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0 |
|
diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0 |
|
|
|
|
|
if not return_dict: |
|
output = (logits, speech_len) + outputs.to_tuple()[1:] |
|
return (loss, diffusion_loss) + output |
|
|
|
return VibeVoiceCausalLMOutputWithPast( |
|
loss=loss, |
|
diffusion_loss=diffusion_loss, |
|
speech_token_num=speech_len if speech_tensors is not None else 0, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
AutoModel.register(VibeVoiceConfig, VibeVoiceModel) |
|
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration) |
|
|
|
__all__ = [ |
|
"VibeVoiceModel", |
|
"VibeVoicePreTrainedModel", |
|
"VibeVoiceForConditionalGeneration", |
|
"VibeVoiceCausalLMOutputWithPast", |
|
"VibeVoiceGenerationOutput", |
|
] |