|
from dataclasses import dataclass |
|
from typing import Dict, List, Optional, Tuple, Union, Callable |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
|
|
from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
from transformers import modeling_utils |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.utils import logging |
|
|
|
|
|
|
|
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceTokenizerEncoderOutput |
|
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead |
|
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler |
|
|
|
from .configuration_vibevoice import VibeVoiceConfig |
|
|
|
from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast |
|
|
|
from .modeling_vibevoice import VibeVoiceModel, VibeVoicePreTrainedModel |
|
from .streamer import AudioStreamer, AsyncAudioStreamer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: |
|
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"] |
|
|
|
@dataclass |
|
class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast): |
|
logits: Optional[torch.FloatTensor] = None |
|
|
|
@dataclass |
|
class VibeVoiceGenerationOutput(ModelOutput): |
|
""" |
|
Output type for VibeVoice generation. |
|
|
|
Args: |
|
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
The generated sequences. |
|
speech_outputs (`List[torch.FloatTensor]`, *optional*): |
|
List of generated speech waveforms or latents for each speech segment. |
|
""" |
|
sequences: torch.LongTensor = None |
|
speech_outputs: Optional[List[torch.FloatTensor]] = None |
|
reach_max_step_sample: Optional[torch.BoolTensor] = None |
|
|
|
class VibeVoiceTokenConstraintProcessor(LogitsProcessor): |
|
"""Constrains token generation to only valid tokens during speech generation.""" |
|
|
|
def __init__(self, valid_token_ids: List[int], device: torch.device = None): |
|
self.valid_token_ids = torch.tensor(valid_token_ids, dtype=torch.long, device=device) |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
mask = torch.full_like(scores, float('-inf')) |
|
mask[:, self.valid_token_ids] = 0 |
|
|
|
|
|
scores = scores + mask |
|
return scores |
|
|
|
class VibeVoiceForConditionalGenerationInference(VibeVoicePreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.model = VibeVoiceModel(config) |
|
|
|
|
|
self.lm_head = nn.Linear(config.decoder_config.hidden_size, config.decoder_config.vocab_size, bias=False) |
|
|
|
|
|
self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps |
|
|
|
|
|
self.post_init() |
|
|
|
@property |
|
def noise_scheduler(self): |
|
return self.model.noise_scheduler |
|
|
|
@property |
|
def prediction_head(self): |
|
return self.model.prediction_head |
|
|
|
@property |
|
def speech_scaling_factor(self): |
|
return self.model.speech_scaling_factor |
|
|
|
@property |
|
def speech_bias_factor(self): |
|
return self.model.speech_bias_factor |
|
|
|
@property |
|
def acoustic_tokenizer(self): |
|
return self.model.acoustic_tokenizer |
|
|
|
@property |
|
def semantic_tokenizer(self): |
|
return self.model.semantic_tokenizer |
|
|
|
@property |
|
def acoustic_connector(self): |
|
return self.model.acoustic_connector |
|
|
|
@property |
|
def semantic_connector(self): |
|
return self.model.semantic_connector |
|
|
|
def tie_weights(self): |
|
""" |
|
Tie the weights between the input embeddings and the output embeddings. |
|
""" |
|
|
|
if not getattr(self.config, 'tie_word_embeddings', False): |
|
return |
|
|
|
if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'): |
|
self.lm_head.weight = self.model.language_model.embed_tokens.weight |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None): |
|
"""Set the speech tokenizers used for encoding and decoding speech.""" |
|
self.model.set_speech_tokenizers(acoustic_tokenizer, semantic_tokenizer) |
|
|
|
def set_ddpm_inference_steps(self, num_steps=None): |
|
self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps |
|
|
|
def _process_speech_inputs(self, speech_tensors, speech_masks, speech_type="audio"): |
|
"""Process speech inputs through tokenizers and connectors.""" |
|
with torch.no_grad(): |
|
if speech_type == "audio": |
|
|
|
encoder_output = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1)) |
|
acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0] |
|
|
|
|
|
acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device) |
|
|
|
|
|
acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()] |
|
|
|
return acoustic_features, acoustic_connected |
|
elif speech_type == "pt": |
|
encoder_output = VibeVoiceTokenizerEncoderOutput(mean=speech_tensors, std=self.acoustic_tokenizer.config.fix_std) |
|
acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0] |
|
|
|
|
|
acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device) |
|
|
|
|
|
acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()] |
|
|
|
return acoustic_features, acoustic_connected |
|
else: |
|
raise NotImplementedError(f"Speech type {speech_type} not implemented") |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
speech_tensors: Optional[torch.FloatTensor] = None, |
|
speech_masks: Optional[torch.BoolTensor] = None, |
|
speech_input_mask: Optional[torch.BoolTensor] = None, |
|
logits_to_keep: Union[int, slice] = 0, |
|
**kwargs, |
|
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]: |
|
""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
speech_tensors (`torch.FloatTensor`, *optional*): |
|
Input speech waveforms for voice cloning or speech understanding. |
|
speech_masks (`torch.BoolTensor`, *optional*): |
|
Masks indicating valid speech frames. |
|
speech_input_mask (`torch.BoolTensor`, *optional*): |
|
Positions in the input sequence where speech embeddings should be inserted. |
|
|
|
Returns: |
|
`VibeVoiceCausalLMOutputWithPast` or tuple |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.model.get_input_embeddings()(input_ids) |
|
|
|
|
|
if speech_tensors is not None and speech_masks is not None: |
|
acoustic_features, speech_embeds = self._process_speech_inputs(speech_tensors.to(self.dtype), speech_masks) |
|
if speech_input_mask is not None: |
|
inputs_embeds[speech_input_mask] = speech_embeds |
|
|
|
outputs = self.model( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
if labels is not None: |
|
raise NotImplementedError("Loss computation is not implemented in this version.") |
|
|
|
return VibeVoiceCausalLMOutputWithPast( |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
last_hidden_state=hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs): |
|
if generation_config is None: |
|
generation_config = GenerationConfig( |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id = tokenizer.pad_token_id |
|
) |
|
else: |
|
generation_config = GenerationConfig( |
|
**generation_config, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id = tokenizer.pad_token_id |
|
) |
|
|
|
generation_config, model_kwargs = self._prepare_generation_config( |
|
generation_config, |
|
True, |
|
speech_start_id=tokenizer.speech_start_id, |
|
speech_end_id=tokenizer.speech_end_id, |
|
speech_diffusion_id=tokenizer.speech_diffusion_id, |
|
**kwargs |
|
) |
|
generation_config.speech_start_id = tokenizer.speech_start_id |
|
generation_config.speech_end_id = tokenizer.speech_end_id |
|
generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id |
|
|
|
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs) |
|
batch_size = inputs_tensor.shape[0] |
|
device = self.device |
|
|
|
self._prepare_special_tokens(generation_config, True, device=device) |
|
generation_config.use_cache = True |
|
model_kwargs["use_cache"] = generation_config.use_cache |
|
input_ids = inputs_tensor.to(self.device) |
|
|
|
input_ids_length = input_ids.shape[1] |
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None |
|
generation_config = self._prepare_generated_length( |
|
generation_config=generation_config, |
|
has_default_max_length=has_default_max_length, |
|
has_default_min_length=has_default_min_length, |
|
model_input_name=model_input_name, |
|
inputs_tensor=inputs_tensor, |
|
input_ids_length=input_ids_length, |
|
) |
|
|
|
max_cache_length = generation_config.max_length - 1 |
|
self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device) |
|
model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long) |
|
for k, v in model_kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
model_kwargs[k] = v.to(device=device) |
|
|
|
if return_processors: |
|
logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_length, |
|
encoder_input_ids=inputs_tensor, |
|
prefix_allowed_tokens_fn=None, |
|
logits_processor=LogitsProcessorList(), |
|
device=inputs_tensor.device, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList()) |
|
|
|
return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria |
|
else: |
|
return generation_config, model_kwargs, input_ids |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None, |
|
negative_prompt_ids: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
speech_tensors: Optional[torch.FloatTensor] = None, |
|
speech_masks: Optional[torch.BoolTensor] = None, |
|
speech_input_mask: Optional[torch.BoolTensor] = None, |
|
return_speech: bool = True, |
|
cfg_scale: float = 1.0, |
|
stop_check_fn: Optional[Callable[[], bool]] = None, |
|
**kwargs, |
|
) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]: |
|
""" |
|
Generates sequences of token ids and optionally speech outputs. |
|
|
|
Args: |
|
All standard generation arguments from GenerationMixin |
|
negative_prompt_ids: Negative prompt for CFG in speech generation |
|
negative_prompt_attention_mask: Attention mask for negative prompt |
|
speech_tensors: Input speech for voice cloning |
|
speech_masks: Masks for speech tensors |
|
speech_input_mask: Positions to insert speech embeddings |
|
return_speech: Whether to decode and return speech outputs |
|
cfg_scale: CFG scale for speech generation |
|
stop_check_fn: Optional callable that returns True if generation should stop |
|
|
|
Returns: |
|
Generated token sequences and optionally speech outputs |
|
""" |
|
|
|
tokenizer = kwargs.pop("tokenizer", None) |
|
parsed_scripts = kwargs.pop("parsed_scripts", None) |
|
all_speakers_list = kwargs.pop("all_speakers_list", None) |
|
max_length_times = kwargs.pop("max_length_times", 2) |
|
|
|
if kwargs.get('max_new_tokens', None) is None: |
|
kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - kwargs['input_ids'].shape[-1] |
|
|
|
generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs( |
|
generation_config, inputs, tokenizer, return_processors=True, **kwargs |
|
) |
|
|
|
negative_kwargs = { |
|
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), tokenizer.speech_start_id, dtype=torch.long, device=kwargs['input_ids'].device), |
|
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device), |
|
'max_new_tokens': kwargs.get('max_new_tokens', 100) |
|
} |
|
negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs( |
|
None, None, tokenizer, return_processors=False, **negative_kwargs |
|
) |
|
|
|
acoustic_cache = VibeVoiceTokenizerStreamingCache() |
|
semantic_cache = VibeVoiceTokenizerStreamingCache() |
|
|
|
batch_size = input_ids.shape[0] |
|
device = input_ids.device |
|
finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device) |
|
correct_cnt = torch.zeros(batch_size, dtype=torch.long, device=device) |
|
is_prefill = True |
|
inputs_embeds = None |
|
verbose = kwargs.get("verbose", False) |
|
|
|
|
|
audio_chunks = [[] for _ in range(batch_size)] |
|
|
|
initial_length = input_ids.shape[-1] |
|
initial_length_per_sample = model_kwargs['attention_mask'].sum(dim=-1) |
|
|
|
|
|
valid_tokens = [ |
|
generation_config.speech_start_id, |
|
generation_config.speech_end_id, |
|
generation_config.speech_diffusion_id, |
|
generation_config.eos_token_id |
|
] |
|
|
|
if hasattr(generation_config, 'bos_token_id') and generation_config.bos_token_id is not None: |
|
valid_tokens.append(generation_config.bos_token_id) |
|
|
|
|
|
token_constraint_processor = VibeVoiceTokenConstraintProcessor(valid_tokens, device=device) |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(token_constraint_processor) |
|
|
|
max_steps = min(generation_config.max_length - initial_length, int(max_length_times * initial_length)) |
|
max_step_per_sample = torch.min(generation_config.max_length - initial_length_per_sample, (max_length_times * initial_length_per_sample).long()) |
|
reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device) |
|
|
|
|
|
if kwargs.get("show_progress_bar", True): |
|
progress_bar = tqdm(range(max_steps), desc="Generating", leave=False) |
|
else: |
|
progress_bar = range(max_steps) |
|
|
|
for step in progress_bar: |
|
|
|
if stop_check_fn is not None and stop_check_fn(): |
|
if verbose: |
|
print(f"Generation stopped externally at step {step + 1}") |
|
|
|
if audio_streamer is not None: |
|
audio_streamer.end() |
|
break |
|
|
|
|
|
if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'): |
|
if any(audio_streamer.finished_flags): |
|
if verbose: |
|
print(f"Audio generation stopped externally at step {step + 1}") |
|
break |
|
|
|
if finished_tags.all(): |
|
if hasattr(progress_bar, 'set_description'): |
|
progress_bar.set_description("Generation complete") |
|
break |
|
|
|
if input_ids.shape[-1] >= generation_config.max_length: |
|
print(f"Reached maximum generation length {generation_config.max_length}, stopped it.") |
|
reached_samples = torch.arange(batch_size, device=device)[~finished_tags] |
|
if reached_samples.numel() > 0: |
|
reach_max_step_sample[reached_samples] = True |
|
break |
|
|
|
|
|
if hasattr(progress_bar, 'set_description'): |
|
active_samples = (~finished_tags).sum().item() |
|
progress_bar.set_description(f"Generating (active: {active_samples}/{batch_size})") |
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
if is_prefill: |
|
|
|
prefill_inputs = { |
|
"speech_tensors": speech_tensors.to(device=device), |
|
"speech_masks": speech_masks.to(device), |
|
"speech_input_mask": speech_input_mask.to(device), |
|
} |
|
is_prefill = False |
|
else: |
|
_ = model_inputs.pop('inputs_embeds', None) |
|
prefill_inputs = {'inputs_embeds': inputs_embeds} |
|
|
|
|
|
outputs = self( |
|
**model_inputs, **prefill_inputs, logits_to_keep=1, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
) |
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=False, |
|
) |
|
|
|
|
|
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device) |
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
|
|
|
|
if generation_config.do_sample: |
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
|
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
else: |
|
next_tokens = torch.argmax(next_token_scores, dim=-1) |
|
|
|
next_tokens[finished_tags] = generation_config.eos_token_id |
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
|
|
if not kwargs.get('refresh_negative', True): |
|
negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs) |
|
|
|
if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None: |
|
negative_model_inputs['inputs_embeds'] = inputs_embeds |
|
negative_model_inputs['input_ids'] = None |
|
|
|
negative_outputs = self( |
|
**negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
) |
|
negative_model_kwargs = self._update_model_kwargs_for_generation( |
|
negative_outputs, negative_model_kwargs, is_encoder_decoder=False, |
|
) |
|
negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1) |
|
|
|
|
|
if (next_tokens == generation_config.eos_token_id).any(): |
|
eos_indices = (next_tokens == generation_config.eos_token_id).nonzero(as_tuple=False).squeeze(1) |
|
|
|
new_eos_indices = eos_indices[~finished_tags[eos_indices]] |
|
if new_eos_indices.numel() > 0: |
|
finished_tags[new_eos_indices] = True |
|
if verbose: |
|
print(f"Samples {new_eos_indices.tolist()} reached EOS token at step {step + 1}.", flush=True) |
|
if audio_streamer is not None: |
|
audio_streamer.end(new_eos_indices) |
|
|
|
|
|
max_length_reached = step >= max_step_per_sample |
|
new_max_length_indices = torch.nonzero(max_length_reached & ~finished_tags, as_tuple=False).squeeze(1) |
|
if new_max_length_indices.numel() > 0: |
|
finished_tags[new_max_length_indices] = True |
|
reach_max_step_sample[new_max_length_indices] = True |
|
if verbose: |
|
print(f"Samples {new_max_length_indices.tolist()} reached max generation length at step {step + 1}.", flush=True) |
|
if audio_streamer is not None: |
|
audio_streamer.end(new_max_length_indices) |
|
|
|
|
|
diffusion_end_indices = (next_tokens == generation_config.speech_end_id).nonzero(as_tuple=False).squeeze(1) |
|
if diffusion_end_indices.numel() > 0: |
|
|
|
acoustic_cache.set_to_zero(diffusion_end_indices) |
|
semantic_cache.set_to_zero(diffusion_end_indices) |
|
|
|
|
|
diffusion_start_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_start_id)] |
|
if diffusion_start_indices.numel() > 0 and kwargs.get('refresh_negative', True): |
|
|
|
for i, sample_idx in enumerate(diffusion_start_indices.tolist()): |
|
negative_model_kwargs['attention_mask'][sample_idx, :] = 0 |
|
negative_model_kwargs['attention_mask'][sample_idx, -1] = 1 |
|
|
|
for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache, |
|
negative_model_kwargs['past_key_values'].value_cache)): |
|
|
|
for sample_idx in diffusion_start_indices.tolist(): |
|
|
|
k_cache[sample_idx, :, -1, :] = k_cache[sample_idx, :, 0, :].clone() |
|
v_cache[sample_idx, :, -1, :] = v_cache[sample_idx, :, 0, :].clone() |
|
|
|
for sample_idx in diffusion_start_indices.tolist(): |
|
negative_input_ids[sample_idx, -1] = generation_config.speech_start_id |
|
|
|
|
|
|
|
next_inputs_embeds = self.model.get_input_embeddings()(next_tokens).unsqueeze(1) |
|
|
|
|
|
|
|
diffusion_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_diffusion_id)] |
|
|
|
if diffusion_indices.numel() > 0: |
|
if kwargs.get('refresh_negative', True): |
|
negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs) |
|
|
|
if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None: |
|
negative_model_inputs['inputs_embeds'] = inputs_embeds |
|
negative_model_inputs['input_ids'] = None |
|
|
|
negative_outputs = self( |
|
**negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
) |
|
negative_model_kwargs = self._update_model_kwargs_for_generation( |
|
negative_outputs, negative_model_kwargs, is_encoder_decoder=False, |
|
) |
|
negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1) |
|
|
|
|
|
|
|
|
|
non_diffusion_mask = ~finished_tags & (next_tokens != generation_config.speech_diffusion_id) |
|
if non_diffusion_mask.any(): |
|
non_diffusion_indices = torch.arange(batch_size, device=device)[non_diffusion_mask] |
|
start_indices = correct_cnt[non_diffusion_indices] |
|
|
|
|
|
seq_len = negative_model_kwargs['attention_mask'].shape[1] |
|
for i, (sample_idx, start_idx) in enumerate(zip(non_diffusion_indices.tolist(), start_indices.tolist())): |
|
|
|
if start_idx + 1 < seq_len - 1: |
|
negative_model_kwargs['attention_mask'][sample_idx, start_idx+1:] = \ |
|
negative_model_kwargs['attention_mask'][sample_idx, start_idx:-1].clone() |
|
negative_model_kwargs['attention_mask'][sample_idx, start_idx] = 0 |
|
|
|
|
|
for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache, |
|
negative_model_kwargs['past_key_values'].value_cache)): |
|
|
|
for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()): |
|
if start_idx + 1 < k_cache.shape[2] - 1: |
|
|
|
k_cache[sample_idx, :, start_idx+1:, :] = k_cache[sample_idx, :, start_idx:-1, :].clone() |
|
v_cache[sample_idx, :, start_idx+1:, :] = v_cache[sample_idx, :, start_idx:-1, :].clone() |
|
|
|
|
|
for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()): |
|
if start_idx + 1 < negative_input_ids.shape[1] - 1: |
|
negative_input_ids[sample_idx, start_idx+1:] = \ |
|
negative_input_ids[sample_idx, start_idx:-1].clone() |
|
|
|
correct_cnt[non_diffusion_indices] += 1 |
|
|
|
positive_condition = outputs.last_hidden_state[diffusion_indices, -1, :] |
|
negative_condition = negative_outputs.last_hidden_state[diffusion_indices, -1, :] |
|
|
|
speech_latent = self.sample_speech_tokens( |
|
positive_condition, |
|
negative_condition, |
|
cfg_scale=cfg_scale, |
|
).unsqueeze(1) |
|
|
|
|
|
scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device) |
|
audio_chunk = self.model.acoustic_tokenizer.decode( |
|
scaled_latent.to(self.model.acoustic_tokenizer.device), |
|
cache=acoustic_cache, |
|
sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device), |
|
use_cache=True, |
|
debug=False |
|
) |
|
|
|
|
|
for i, sample_idx in enumerate(diffusion_indices): |
|
idx = sample_idx.item() |
|
|
|
if not finished_tags[idx]: |
|
audio_chunks[idx].append(audio_chunk[i]) |
|
|
|
|
|
if audio_streamer is not None: |
|
|
|
audio_streamer.put(audio_chunk, diffusion_indices) |
|
|
|
|
|
semantic_features = self.model.semantic_tokenizer.encode( |
|
audio_chunk, |
|
cache=semantic_cache, |
|
sample_indices=diffusion_indices, |
|
use_cache=True, |
|
debug=False |
|
).mean |
|
|
|
|
|
acoustic_embed = self.model.acoustic_connector(speech_latent) |
|
semantic_embed = self.model.semantic_connector(semantic_features) |
|
diffusion_embeds = acoustic_embed + semantic_embed |
|
|
|
|
|
next_inputs_embeds[diffusion_indices] = diffusion_embeds |
|
|
|
|
|
inputs_embeds = next_inputs_embeds |
|
|
|
if audio_streamer is not None: |
|
audio_streamer.end() |
|
|
|
|
|
final_audio_outputs = [] |
|
for sample_chunks in audio_chunks: |
|
if sample_chunks: |
|
|
|
concatenated_audio = torch.cat(sample_chunks, dim=-1) |
|
final_audio_outputs.append(concatenated_audio) |
|
else: |
|
|
|
final_audio_outputs.append(None) |
|
|
|
return VibeVoiceGenerationOutput( |
|
sequences=input_ids, |
|
speech_outputs=final_audio_outputs if return_speech else None, |
|
reach_max_step_sample=reach_max_step_sample, |
|
) |
|
|
|
@torch.no_grad() |
|
def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0): |
|
self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps) |
|
condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device) |
|
speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition) |
|
for t in self.model.noise_scheduler.timesteps: |
|
half = speech[: len(speech) // 2] |
|
combined = torch.cat([half, half], dim=0) |
|
eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition) |
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) |
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) |
|
eps = torch.cat([half_eps, half_eps], dim=0) |
|
speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample |
|
return speech[: len(speech) // 2] |
|
|
|
|
|
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGenerationInference) |
|
|
|
__all__ = [ |
|
"VibeVoiceForConditionalGenerationInference", |
|
] |
|
|