|
import math |
|
import torch |
|
|
|
|
|
class UniformSampler: |
|
def __init__(self, timesteps = 1000): |
|
self.timesteps = timesteps |
|
def sample(self, batch_size, device): |
|
return torch.randint(0, self.timesteps, (batch_size,), device=device) |
|
|
|
class LogitNormalSampler: |
|
def __init__(self, timesteps = 1000, m = 0, s = 1): |
|
self.timesteps = timesteps |
|
timesteps = torch.linspace(0, 1, timesteps) |
|
logit = torch.log(timesteps / (1 - timesteps)) |
|
self.prob = torch.exp(-0.5 * (logit - m) ** 2 / s ** 2) / (s * math.sqrt(2 * math.pi)) |
|
def sample(self, batch_size, device): |
|
return torch.multinomial(self.prob, batch_size, replacement=True).to(device) |
|
|