--- language: - code tags: - code-generation - ai-assistant - code-completion - python - machine-learning - transformer - gpt license: mit datasets: - github-code - stackoverflow - synthetic-code library_name: transformers pipeline_tag: text-generation model-index: - name: Jaleah AI Code Generator results: - task: type: text-generation name: Code Generation dataset: name: Multi-Source Python Code Corpus type: mixed metrics: - type: code-generation name: Code Generation Score value: experimental - type: syntax-correctness name: Syntax Correctness Rate value: high - type: contextual-relevance name: Contextual Relevance value: moderate parameters: max_length: default: 200 range: - 50 - 500 temperature: default: 0.7 range: - 0.1 - 1.0 top_k: default: 50 range: - 1 - 100 top_p: default: 0.95 range: - 0.1 - 1.0 model_type: causal architectures: - GPTNeoForCausalLM training_config: base_model: microsoft/CodeGPT-small-py training_objective: causal-language-modeling compute_environment: - gpu - cloud training_time: ~3 hours hardware: - cuda - t4-gpu --- # Jaleah AI Code Generation Model ## Model Description Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains. ### Model Details - **Developed by:** TeckMill AI Research Team - **Base Model:** microsoft/CodeGPT-small-py - **Language:** Python - **Version:** 1.0 # Jaleah AI Code Generation Model ## Model Description Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains. ### Model Details - **Developed by:** TeckMill AI Research Team - **Base Model:** microsoft/CodeGPT-small-py - **Language:** Python - **Version:** 1.0 # Jaleah AI Code Generation Model ## Model Description Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains. ### Model Details - **Developed by:** TeckMill AI Research Team - **Base Model:** microsoft/CodeGPT-small-py - **Language:** Python - **Version:** 1.0 ## Intended Uses & Limitations ### Intended Uses - Code snippet generation - Assisting developers with Python programming - Providing intelligent code suggestions - Rapid prototyping of Python functions and classes ### Limitations - May generate syntactically incorrect code - Requires human review and validation - Performance may vary across different coding domains - Not suitable for complete project generation ## Training Data ### Data Sources The model was trained on a diverse dataset including: - GitHub trending repositories - Stack Overflow top-rated code answers - Open-source Python project codebases - Synthetic code generation - Complex algorithmic implementations ### Data Preprocessing - Syntax validation - Comment and docstring removal - Length and complexity filtering ## Training Procedure ### Training Hyperparameters - **Learning Rate:** 5e-05 - **Batch Size:** 4 - **Epochs:** 12 - **Optimizer:** AdamW - **Learning Rate Scheduler:** Linear - **Weight Decay:** 0.01 ### Training Process - Fine-tuning of pre-trained CodeGPT model - Multi-source code collection - Advanced synthetic code generation - Rigorous code validation ## Evaluation Detailed evaluation metrics to be added in future versions. ## Ethical Considerations - Designed to assist, not replace, human developers - Encourages learning and code understanding ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("teckmill/jaleah-ai-model") tokenizer = AutoTokenizer.from_pretrained("teckmill/jaleah-ai-model") def generate_code(prompt, max_length=200): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) return tokenizer.decode(output[0], skip_special_tokens=True)