Initial commit
Browse files- 1_SpladePooling/config.json +5 -0
- README.md +405 -4
- added_tokens.json +3 -0
- config.json +45 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +329 -0
- vocab.txt +0 -0
1_SpladePooling/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pooling_strategy": "max",
|
3 |
+
"activation_function": "relu",
|
4 |
+
"word_embedding_dimension": 50000
|
5 |
+
}
|
README.md
CHANGED
@@ -1,5 +1,406 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sparse-encoder
|
5 |
+
- sparse
|
6 |
+
- splade
|
7 |
+
- generated_from_trainer
|
8 |
+
- dataset_size:1112040
|
9 |
+
- loss:SpladeLoss
|
10 |
+
- loss:SparseMultipleNegativesRankingLoss
|
11 |
+
- loss:FlopsLoss
|
12 |
+
widget:
|
13 |
+
- text: 매크로 (명사). 복잡한 입력을 컴퓨터 프로그램에 대해 비교적 인간 친화적으로 줄인 표현. 전처리기는 컴파일되기 전에 모든 내장된 매크로를
|
14 |
+
소스 코드로 확장한다.
|
15 |
+
- text: "브레네 호수 \n브레네 호수는 스위스 보주주 조 계곡에 위치한 호수입니다. 이 호수는 조 호수의 북쪽에 있으며, 단 200미터 떨어져\
|
16 |
+
\ 있습니다. 해발 1002미터로 조 호수보다 2미터 낮습니다."
|
17 |
+
- text: 그 앨범 "Making Lite of Myself"를 만든 코미디언의 국적은 무엇인가요?
|
18 |
+
- text: 비어 있음의 의미는 무엇인가요?
|
19 |
+
- text: '파트라데비(콘카니어: 포트라데오)는 고아의 페르넴 탈루크에 위치한 마을로, 고아와 마하라슈트라 경계에 있습니다. 이 마을에는 파트라데비
|
20 |
+
검문소가 위치해 있습니다.'
|
21 |
+
pipeline_tag: feature-extraction
|
22 |
+
library_name: sentence-transformers
|
23 |
+
---
|
24 |
+
|
25 |
+
# SPLADE Sparse Encoder
|
26 |
+
|
27 |
+
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the json dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 50000-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
28 |
+
## Model Details
|
29 |
+
|
30 |
+
### Model Description
|
31 |
+
- **Model Type:** SPLADE Sparse Encoder
|
32 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
33 |
+
- **Maximum Sequence Length:** 3072 tokens
|
34 |
+
- **Output Dimensionality:** 50000 dimensions
|
35 |
+
- **Similarity Function:** Dot Product
|
36 |
+
- **Training Dataset:**
|
37 |
+
- json
|
38 |
+
<!-- - **Language:** Unknown -->
|
39 |
+
<!-- - **License:** Unknown -->
|
40 |
+
|
41 |
+
### Model Sources
|
42 |
+
|
43 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
44 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
45 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
46 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
47 |
+
|
48 |
+
### Full Model Architecture
|
49 |
+
|
50 |
+
```
|
51 |
+
SparseEncoder(
|
52 |
+
(0): MLMTransformer({'max_seq_length': 3072, 'do_lower_case': False, 'architecture': 'ModernBertForMaskedLM'})
|
53 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 50000})
|
54 |
+
)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Usage
|
58 |
+
|
59 |
+
### Direct Usage (Sentence Transformers)
|
60 |
+
|
61 |
+
First install the Sentence Transformers library:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
pip install -U sentence-transformers
|
65 |
+
```
|
66 |
+
|
67 |
+
Then you can load this model and run inference.
|
68 |
+
```python
|
69 |
+
from sentence_transformers import SparseEncoder
|
70 |
+
|
71 |
+
# Download from the 🤗 Hub
|
72 |
+
model = SparseEncoder("sparse_encoder_model_id")
|
73 |
+
# Run inference
|
74 |
+
sentences = [
|
75 |
+
'파트라데비는 고아의 페르넴 타룩에 위치한 마을로, 고아는 어느 나라에 있는 주인가요?',
|
76 |
+
'파트라데비(콘카니어: 포트라데오)는 고아의 페르넴 탈루크에 위치한 마을로, 고아와 마하라슈트라 경계에 있습니다. 이 마을에는 파트라데비 검문소가 위치해 있습니다.',
|
77 |
+
'콘디바데 A.m 콘디바데 A.m은 인도의 한 마을입니다. 이 마을은 마하라슈트라 주의 푸네 지구 마왈 탈루카에 위치해 있습니다.',
|
78 |
+
]
|
79 |
+
embeddings = model.encode(sentences)
|
80 |
+
print(embeddings.shape)
|
81 |
+
# [3, 50000]
|
82 |
+
|
83 |
+
# Get the similarity scores for the embeddings
|
84 |
+
similarities = model.similarity(embeddings, embeddings)
|
85 |
+
print(similarities)
|
86 |
+
# tensor([[25.1626, 27.0573, 7.1256],
|
87 |
+
# [27.0573, 84.2966, 31.7376],
|
88 |
+
# [ 7.1256, 31.7376, 74.3025]])
|
89 |
+
```
|
90 |
+
|
91 |
+
<!--
|
92 |
+
### Direct Usage (Transformers)
|
93 |
+
|
94 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
95 |
+
|
96 |
+
</details>
|
97 |
+
-->
|
98 |
+
|
99 |
+
<!--
|
100 |
+
### Downstream Usage (Sentence Transformers)
|
101 |
+
|
102 |
+
You can finetune this model on your own dataset.
|
103 |
+
|
104 |
+
<details><summary>Click to expand</summary>
|
105 |
+
|
106 |
+
</details>
|
107 |
+
-->
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Out-of-Scope Use
|
111 |
+
|
112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
+
-->
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Bias, Risks and Limitations
|
117 |
+
|
118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Recommendations
|
123 |
+
|
124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
## Training Details
|
128 |
+
|
129 |
+
### Training Dataset
|
130 |
+
|
131 |
+
#### json
|
132 |
+
|
133 |
+
* Dataset: json
|
134 |
+
* Size: 1,112,040 training samples
|
135 |
+
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, and <code>negative_3</code>
|
136 |
+
* Approximate statistics based on the first 1000 samples:
|
137 |
+
| | anchor | positive | negative_1 | negative_2 | negative_3 |
|
138 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
139 |
+
| type | string | string | string | string | string |
|
140 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 18.8 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 50.36 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 47.98 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 47.69 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 47.96 tokens</li><li>max: 78 tokens</li></ul> |
|
141 |
+
* Samples:
|
142 |
+
| anchor | positive | negative_1 | negative_2 | negative_3 |
|
143 |
+
|:-------------------------------------------------------------------|:-------------------------------------------------------|:--------------------------------------------------------------|:---------------------------------------------------------------|:----------------------------------------------------------------|
|
144 |
+
| <code>난촨구와 둥촨구는 어느 나라에 위치해 있습니까?</code> | <code>난촨구(南川区)는 중국 충칭의 구이자 이전의 현이다.</code> | <code>남풍현(南丰县)은 중국 장시성(江西省) 푸저우(福州)에 위치한 군이다.</code> | <code>도교, 광둥 도교(道滘)는 중국 남부 광둥성 동관 시의 관할 하에 있는 도시입니다.</code> | <code>동포구 동포구는 중국 쓰촨성의 구역입니다. 이곳은 메이산시의 관할 하에 있습니다.</code> |
|
145 |
+
| <code>가짜대나무(Pseudosasa)와 별꽃(Cerastium)은 모두 자생 식물과 관련이 있습니까?</code> | <code>가짜사사(Pseudosasa)는 풀과에 속하는 동아시아 대나무의 속입니다.</code> | <code>세팔로소루스(Cephalosorus)는 데이지 과에 속하는 꽃이 피는 식물의 속입니다.</code> | <code>가짜기생충속(Pseudoparasitus)은 라엘라피다에 속하는 진드기의 속입니다.</code> | <code>페리타사(Peritassa)는 쐐기풀과(Celastraceae) 식물의 속입니다.</code> |
|
146 |
+
| <code>그저우와 헤이룽장성 동닝은 어떤 나라와 접경하고 있습니까?</code> | <code>허주(贺州)는 중화인민공화국 광시 좡족 자치구 북동부에 위치한 지급시이다.</code> | <code>지관구(지관구)는 중국 인민공화국 헤이룽장성 지시시의 구이자 시청 소재지입니다.</code> | <code>헤동 가도(河东街道)는 중국 광시(广西) 리우저우(柳州) 청중 구(城中区)의 가도입니다.</code> | <code>화닝현 (华宁县; 병음: Huáníng Xiàn)은 중국 윈난성 유시시에 위치해 있습니다.</code> |
|
147 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
148 |
+
```json
|
149 |
+
{
|
150 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
|
151 |
+
"document_regularizer_weight": 3e-05,
|
152 |
+
"query_regularizer_weight": 5e-05
|
153 |
+
}
|
154 |
+
```
|
155 |
+
|
156 |
+
### Training Hyperparameters
|
157 |
+
#### Non-Default Hyperparameters
|
158 |
+
|
159 |
+
- `per_device_train_batch_size`: 6
|
160 |
+
- `gradient_accumulation_steps`: 4
|
161 |
+
- `learning_rate`: 2e-06
|
162 |
+
- `warmup_ratio`: 0.1
|
163 |
+
- `bf16`: True
|
164 |
+
- `ddp_find_unused_parameters`: True
|
165 |
+
- `ddp_timeout`: 7200
|
166 |
+
- `batch_sampler`: no_duplicates
|
167 |
+
|
168 |
+
#### All Hyperparameters
|
169 |
+
<details><summary>Click to expand</summary>
|
170 |
+
|
171 |
+
- `overwrite_output_dir`: False
|
172 |
+
- `do_predict`: False
|
173 |
+
- `eval_strategy`: no
|
174 |
+
- `prediction_loss_only`: True
|
175 |
+
- `per_device_train_batch_size`: 6
|
176 |
+
- `per_device_eval_batch_size`: 8
|
177 |
+
- `per_gpu_train_batch_size`: None
|
178 |
+
- `per_gpu_eval_batch_size`: None
|
179 |
+
- `gradient_accumulation_steps`: 4
|
180 |
+
- `eval_accumulation_steps`: None
|
181 |
+
- `torch_empty_cache_steps`: None
|
182 |
+
- `learning_rate`: 2e-06
|
183 |
+
- `weight_decay`: 0.0
|
184 |
+
- `adam_beta1`: 0.9
|
185 |
+
- `adam_beta2`: 0.999
|
186 |
+
- `adam_epsilon`: 1e-08
|
187 |
+
- `max_grad_norm`: 1.0
|
188 |
+
- `num_train_epochs`: 3
|
189 |
+
- `max_steps`: -1
|
190 |
+
- `lr_scheduler_type`: linear
|
191 |
+
- `lr_scheduler_kwargs`: {}
|
192 |
+
- `warmup_ratio`: 0.1
|
193 |
+
- `warmup_steps`: 0
|
194 |
+
- `log_level`: passive
|
195 |
+
- `log_level_replica`: warning
|
196 |
+
- `log_on_each_node`: True
|
197 |
+
- `logging_nan_inf_filter`: True
|
198 |
+
- `save_safetensors`: True
|
199 |
+
- `save_on_each_node`: False
|
200 |
+
- `save_only_model`: False
|
201 |
+
- `restore_callback_states_from_checkpoint`: False
|
202 |
+
- `no_cuda`: False
|
203 |
+
- `use_cpu`: False
|
204 |
+
- `use_mps_device`: False
|
205 |
+
- `seed`: 42
|
206 |
+
- `data_seed`: None
|
207 |
+
- `jit_mode_eval`: False
|
208 |
+
- `use_ipex`: False
|
209 |
+
- `bf16`: True
|
210 |
+
- `fp16`: False
|
211 |
+
- `fp16_opt_level`: O1
|
212 |
+
- `half_precision_backend`: auto
|
213 |
+
- `bf16_full_eval`: False
|
214 |
+
- `fp16_full_eval`: False
|
215 |
+
- `tf32`: None
|
216 |
+
- `local_rank`: 2
|
217 |
+
- `ddp_backend`: None
|
218 |
+
- `tpu_num_cores`: None
|
219 |
+
- `tpu_metrics_debug`: False
|
220 |
+
- `debug`: []
|
221 |
+
- `dataloader_drop_last`: True
|
222 |
+
- `dataloader_num_workers`: 0
|
223 |
+
- `dataloader_prefetch_factor`: None
|
224 |
+
- `past_index`: -1
|
225 |
+
- `disable_tqdm`: False
|
226 |
+
- `remove_unused_columns`: True
|
227 |
+
- `label_names`: None
|
228 |
+
- `load_best_model_at_end`: False
|
229 |
+
- `ignore_data_skip`: False
|
230 |
+
- `fsdp`: []
|
231 |
+
- `fsdp_min_num_params`: 0
|
232 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
233 |
+
- `tp_size`: 0
|
234 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
235 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
236 |
+
- `deepspeed`: None
|
237 |
+
- `label_smoothing_factor`: 0.0
|
238 |
+
- `optim`: adamw_torch
|
239 |
+
- `optim_args`: None
|
240 |
+
- `adafactor`: False
|
241 |
+
- `group_by_length`: False
|
242 |
+
- `length_column_name`: length
|
243 |
+
- `ddp_find_unused_parameters`: True
|
244 |
+
- `ddp_bucket_cap_mb`: None
|
245 |
+
- `ddp_broadcast_buffers`: False
|
246 |
+
- `dataloader_pin_memory`: True
|
247 |
+
- `dataloader_persistent_workers`: False
|
248 |
+
- `skip_memory_metrics`: True
|
249 |
+
- `use_legacy_prediction_loop`: False
|
250 |
+
- `push_to_hub`: False
|
251 |
+
- `resume_from_checkpoint`: None
|
252 |
+
- `hub_model_id`: None
|
253 |
+
- `hub_strategy`: every_save
|
254 |
+
- `hub_private_repo`: None
|
255 |
+
- `hub_always_push`: False
|
256 |
+
- `gradient_checkpointing`: False
|
257 |
+
- `gradient_checkpointing_kwargs`: None
|
258 |
+
- `include_inputs_for_metrics`: False
|
259 |
+
- `include_for_metrics`: []
|
260 |
+
- `eval_do_concat_batches`: True
|
261 |
+
- `fp16_backend`: auto
|
262 |
+
- `push_to_hub_model_id`: None
|
263 |
+
- `push_to_hub_organization`: None
|
264 |
+
- `mp_parameters`:
|
265 |
+
- `auto_find_batch_size`: False
|
266 |
+
- `full_determinism`: False
|
267 |
+
- `torchdynamo`: None
|
268 |
+
- `ray_scope`: last
|
269 |
+
- `ddp_timeout`: 7200
|
270 |
+
- `torch_compile`: False
|
271 |
+
- `torch_compile_backend`: None
|
272 |
+
- `torch_compile_mode`: None
|
273 |
+
- `include_tokens_per_second`: False
|
274 |
+
- `include_num_input_tokens_seen`: False
|
275 |
+
- `neftune_noise_alpha`: None
|
276 |
+
- `optim_target_modules`: None
|
277 |
+
- `batch_eval_metrics`: False
|
278 |
+
- `eval_on_start`: False
|
279 |
+
- `use_liger_kernel`: False
|
280 |
+
- `eval_use_gather_object`: False
|
281 |
+
- `average_tokens_across_devices`: False
|
282 |
+
- `prompts`: None
|
283 |
+
- `batch_sampler`: no_duplicates
|
284 |
+
- `multi_dataset_batch_sampler`: proportional
|
285 |
+
- `router_mapping`: {}
|
286 |
+
- `learning_rate_mapping`: {}
|
287 |
+
|
288 |
+
</details>
|
289 |
+
|
290 |
+
### Training Logs
|
291 |
+
| Epoch | Step | Training Loss |
|
292 |
+
|:------:|:-----:|:-------------:|
|
293 |
+
| 0.0863 | 1000 | 4.8919 |
|
294 |
+
| 0.1727 | 2000 | 3.4433 |
|
295 |
+
| 0.2590 | 3000 | 3.1294 |
|
296 |
+
| 0.3453 | 4000 | 2.9256 |
|
297 |
+
| 0.4316 | 5000 | 2.8705 |
|
298 |
+
| 0.5180 | 6000 | 2.2949 |
|
299 |
+
| 0.6043 | 7000 | 1.451 |
|
300 |
+
| 0.6906 | 8000 | 1.1573 |
|
301 |
+
| 0.7770 | 9000 | 1.0298 |
|
302 |
+
| 0.8633 | 10000 | 1.1008 |
|
303 |
+
| 0.9496 | 11000 | 1.3943 |
|
304 |
+
| 1.0360 | 12000 | 2.1922 |
|
305 |
+
| 1.1223 | 13000 | 2.6991 |
|
306 |
+
| 1.2087 | 14000 | 2.4977 |
|
307 |
+
| 1.2950 | 15000 | 2.448 |
|
308 |
+
| 1.3813 | 16000 | 2.4044 |
|
309 |
+
| 1.4676 | 17000 | 2.3224 |
|
310 |
+
| 1.5540 | 18000 | 1.4636 |
|
311 |
+
| 1.6403 | 19000 | 1.0056 |
|
312 |
+
| 1.7266 | 20000 | 0.8397 |
|
313 |
+
| 1.8129 | 21000 | 0.8211 |
|
314 |
+
| 1.8993 | 22000 | 0.9905 |
|
315 |
+
| 1.9856 | 23000 | 1.3015 |
|
316 |
+
| 2.0720 | 24000 | 2.3987 |
|
317 |
+
| 2.1583 | 25000 | 2.3067 |
|
318 |
+
| 2.2447 | 26000 | 2.2579 |
|
319 |
+
| 2.3310 | 27000 | 2.2134 |
|
320 |
+
| 2.4173 | 28000 | 2.2357 |
|
321 |
+
| 2.5036 | 29000 | 1.867 |
|
322 |
+
| 2.5900 | 30000 | 1.0632 |
|
323 |
+
| 2.6763 | 31000 | 0.8168 |
|
324 |
+
| 2.7626 | 32000 | 0.7357 |
|
325 |
+
| 2.8489 | 33000 | 0.7851 |
|
326 |
+
| 2.9353 | 34000 | 1.0681 |
|
327 |
+
|
328 |
+
|
329 |
+
### Framework Versions
|
330 |
+
- Python: 3.11.12
|
331 |
+
- Sentence Transformers: 5.0.0
|
332 |
+
- Transformers: 4.51.3
|
333 |
+
- PyTorch: 2.7.0+cu128
|
334 |
+
- Accelerate: 1.5.2
|
335 |
+
- Datasets: 2.21.0
|
336 |
+
- Tokenizers: 0.21.1
|
337 |
+
|
338 |
+
## Citation
|
339 |
+
|
340 |
+
### BibTeX
|
341 |
+
|
342 |
+
#### Sentence Transformers
|
343 |
+
```bibtex
|
344 |
+
@inproceedings{reimers-2019-sentence-bert,
|
345 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
346 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
347 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
348 |
+
month = "11",
|
349 |
+
year = "2019",
|
350 |
+
publisher = "Association for Computational Linguistics",
|
351 |
+
url = "https://arxiv.org/abs/1908.10084",
|
352 |
+
}
|
353 |
+
```
|
354 |
+
|
355 |
+
#### SpladeLoss
|
356 |
+
```bibtex
|
357 |
+
@misc{formal2022distillationhardnegativesampling,
|
358 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
359 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
360 |
+
year={2022},
|
361 |
+
eprint={2205.04733},
|
362 |
+
archivePrefix={arXiv},
|
363 |
+
primaryClass={cs.IR},
|
364 |
+
url={https://arxiv.org/abs/2205.04733},
|
365 |
+
}
|
366 |
+
```
|
367 |
+
|
368 |
+
#### SparseMultipleNegativesRankingLoss
|
369 |
+
```bibtex
|
370 |
+
@misc{henderson2017efficient,
|
371 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
372 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
373 |
+
year={2017},
|
374 |
+
eprint={1705.00652},
|
375 |
+
archivePrefix={arXiv},
|
376 |
+
primaryClass={cs.CL}
|
377 |
+
}
|
378 |
+
```
|
379 |
+
|
380 |
+
#### FlopsLoss
|
381 |
+
```bibtex
|
382 |
+
@article{paria2020minimizing,
|
383 |
+
title={Minimizing flops to learn efficient sparse representations},
|
384 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
385 |
+
journal={arXiv preprint arXiv:2004.05665},
|
386 |
+
year={2020}
|
387 |
+
}
|
388 |
+
```
|
389 |
+
|
390 |
+
<!--
|
391 |
+
## Glossary
|
392 |
+
|
393 |
+
*Clearly define terms in order to be accessible across audiences.*
|
394 |
+
-->
|
395 |
+
|
396 |
+
<!--
|
397 |
+
## Model Card Authors
|
398 |
+
|
399 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
400 |
+
-->
|
401 |
+
|
402 |
+
<!--
|
403 |
+
## Model Card Contact
|
404 |
+
|
405 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
406 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 49999
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_activation": "gelu",
|
9 |
+
"classifier_bias": false,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"classifier_pooling": "mean",
|
12 |
+
"cls_token_id": 0,
|
13 |
+
"decoder_bias": true,
|
14 |
+
"deterministic_flash_attn": false,
|
15 |
+
"embedding_dropout": 0.0,
|
16 |
+
"eos_token_id": 1,
|
17 |
+
"global_attn_every_n_layers": 3,
|
18 |
+
"global_rope_theta": 160000,
|
19 |
+
"gradient_checkpointing": false,
|
20 |
+
"hidden_activation": "gelu",
|
21 |
+
"hidden_size": 768,
|
22 |
+
"initializer_cutoff_factor": 2.0,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 1152,
|
25 |
+
"layer_norm_eps": 1e-05,
|
26 |
+
"local_attention": 128,
|
27 |
+
"local_rope_theta": 10000.0,
|
28 |
+
"max_position_embeddings": 16384,
|
29 |
+
"mlp_bias": false,
|
30 |
+
"mlp_dropout": 0.0,
|
31 |
+
"model_type": "modernbert",
|
32 |
+
"norm_bias": false,
|
33 |
+
"norm_eps": 1e-05,
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 22,
|
36 |
+
"pad_token_id": 49999,
|
37 |
+
"position_embedding_type": "absolute",
|
38 |
+
"repad_logits_with_grad": false,
|
39 |
+
"sep_token_id": 1,
|
40 |
+
"sparse_pred_ignore_index": -100,
|
41 |
+
"sparse_prediction": false,
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.51.3",
|
44 |
+
"vocab_size": 50000
|
45 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SparseEncoder",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.51.3",
|
6 |
+
"pytorch": "2.7.0+cu128"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "dot"
|
14 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1869e2c80d885e73805f28977890ad697066463853883524bf7406bcdc5827e6
|
3 |
+
size 597503064
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_SpladePooling",
|
12 |
+
"type": "sentence_transformers.sparse_encoder.models.SpladePooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<cls>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "<\\s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "<sep>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<\\s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<unk>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<sep>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "<cls>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "<unused0>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "<unused1>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "<unused2>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "<unused3>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "<unused4>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "<unused5>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "<unused6>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "<unused7>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "<unused8>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "<unused9>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "<unused10>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "<unused11>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "<unused12>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "<unused13>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "<unused14>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "<unused15>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "<unused16>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "<unused17>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "<unused18>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "<unused19>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "<unused20>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "<unused21>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "<unused22>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "<unused23>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "<unused24>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "<unused25>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "<unused26>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "<unused27>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "<unused28>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "<unused29>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "<unused30>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"49999": {
|
300 |
+
"content": "<pad>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
}
|
307 |
+
},
|
308 |
+
"bos_token": "<s>",
|
309 |
+
"clean_up_tokenization_spaces": true,
|
310 |
+
"cls_token": "<cls>",
|
311 |
+
"do_lower_case": false,
|
312 |
+
"eos_token": "<\\s>",
|
313 |
+
"extra_special_tokens": {},
|
314 |
+
"mask_token": "<mask>",
|
315 |
+
"max_length": 2048,
|
316 |
+
"model_max_length": 8192,
|
317 |
+
"pad_to_multiple_of": null,
|
318 |
+
"pad_token": "<pad>",
|
319 |
+
"pad_token_type_id": 0,
|
320 |
+
"padding_side": "right",
|
321 |
+
"sep_token": "<sep>",
|
322 |
+
"stride": 0,
|
323 |
+
"strip_accents": null,
|
324 |
+
"tokenize_chinese_chars": true,
|
325 |
+
"tokenizer_class": "BertTokenizer",
|
326 |
+
"truncation_side": "right",
|
327 |
+
"truncation_strategy": "longest_first",
|
328 |
+
"unk_token": "<unk>"
|
329 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|