Delete vit_model.py
Browse files- vit_model.py +0 -1083
vit_model.py
DELETED
|
@@ -1,1083 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import types
|
| 3 |
-
import math
|
| 4 |
-
import torch
|
| 5 |
-
from torch import Tensor, nn
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
from typing import List, Tuple, Optional, Union
|
| 8 |
-
from contextlib import contextmanager
|
| 9 |
-
from transformers.modeling_attn_mask_utils import (
|
| 10 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 11 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 12 |
-
_prepare_4d_causal_attention_mask,
|
| 13 |
-
)
|
| 14 |
-
from transformers.models.clip.configuration_clip import CLIPVisionConfig
|
| 15 |
-
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
| 16 |
-
from .modeling_hunyuan import HunYuanDecoderLayer, HunYuanRMSNorm
|
| 17 |
-
from .configuration_hunyuan import HunYuanConfig
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def NaVitForward(input_ids, encoder_input, vit, image_tensors, images_pos, vit_input_resolution, im_start_id, im_end_id, image_token_id, anyres_vit_two_views, dtype):
|
| 21 |
-
# input_ids: (B, L)
|
| 22 |
-
# encoder_input: (L, B, E)
|
| 23 |
-
# image_tensors [[Tensor],...,[Tensor]]
|
| 24 |
-
# image_pos [[Tensor],...,[Tensor]]
|
| 25 |
-
# tokenizer = get_tokenizer()
|
| 26 |
-
b = len(input_ids)
|
| 27 |
-
img_embs = None
|
| 28 |
-
all_nums = sum([len(tensors) for tensors in image_tensors]) if image_tensors else 0
|
| 29 |
-
if all_nums != 0:
|
| 30 |
-
img_embs, img_batch_pos = vit(image_tensors)
|
| 31 |
-
else:
|
| 32 |
-
# when no input image, initialize a fake tensor
|
| 33 |
-
pad_nums = 1
|
| 34 |
-
image_tensors = [[torch.rand(3, vit_input_resolution, vit_input_resolution, dtype=dtype, device=torch.cuda.current_device()) for _ in range(pad_nums)]]
|
| 35 |
-
img_embs, img_batch_pos = vit(image_tensors)
|
| 36 |
-
|
| 37 |
-
encoder_input = encoder_input.clone()
|
| 38 |
-
if all_nums > 0:
|
| 39 |
-
assert len(images_pos) == len(img_batch_pos), \
|
| 40 |
-
(len(images_pos), len(img_batch_pos))
|
| 41 |
-
start_token_id = im_start_id
|
| 42 |
-
end_token_id = im_end_id
|
| 43 |
-
placeholder_id = image_token_id
|
| 44 |
-
for idx in range(len(images_pos)):
|
| 45 |
-
assert len(images_pos[idx]) == len(img_batch_pos[idx]), \
|
| 46 |
-
(len(images_pos[idx]), len(img_batch_pos[idx]))
|
| 47 |
-
for p_img_pos_in_batch, p_batch_img_pos in zip(img_batch_pos[idx], images_pos[idx]):
|
| 48 |
-
# the positions to be filled [s_start, s_end)
|
| 49 |
-
s_idx, s_start, s_end = p_img_pos_in_batch
|
| 50 |
-
current_embs = img_embs[s_idx, s_start:s_end]
|
| 51 |
-
im_s, im_e = p_batch_img_pos
|
| 52 |
-
assert len(current_embs) == im_e - im_s, \
|
| 53 |
-
(img_embs.shape, (s_start, s_end, s_idx), current_embs.shape, (im_s, im_e, idx))
|
| 54 |
-
if not anyres_vit_two_views:
|
| 55 |
-
assert input_ids[idx, im_s - 1] == start_token_id, \
|
| 56 |
-
input_ids[idx, im_s - 1]
|
| 57 |
-
assert input_ids[idx, im_e] == end_token_id, \
|
| 58 |
-
input_ids[idx, im_e]
|
| 59 |
-
assert (input_ids[idx, im_s:im_e] == placeholder_id).all(), \
|
| 60 |
-
f'The tokens to be filled are not the placeholder_id {placeholder_id}: {(input_ids[idx, im_s:im_e] == placeholder_id).sum()} vs {im_e - im_s}'
|
| 61 |
-
encoder_input[idx, im_s:im_e] = current_embs
|
| 62 |
-
else:
|
| 63 |
-
# when no input image, to mask vit value
|
| 64 |
-
vit_mask = torch.zeros([1, img_embs.shape[0]], device=torch.cuda.current_device())
|
| 65 |
-
current_embs = img_embs[0, :]
|
| 66 |
-
encoder_input[0, 1:img_embs.shape[0] + 1] = encoder_input[0, 1:img_embs.shape[0] + 1] * (1 - vit_mask) + current_embs * vit_mask
|
| 67 |
-
return encoder_input, input_ids
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def VitForward(input_ids, encoder_input, vit, vit_linear_encoder, image_tensors, images_pos, vit_input_resolution, vit_mapping_type, vit_patch, vit_token):
|
| 71 |
-
vit_patch_mlp = (vit_patch > 1 and vit_mapping_type == 'mlp') or vit_patch == 0
|
| 72 |
-
|
| 73 |
-
b = len(input_ids)
|
| 74 |
-
if images_pos is None:
|
| 75 |
-
images_pos = torch.ones([len(input_ids), 1, 3])
|
| 76 |
-
images_pos[:, :, 1] = images_pos[:, :, 1]*(vit_token + 1)
|
| 77 |
-
images_pos = images_pos.long()
|
| 78 |
-
|
| 79 |
-
real_image_nums = []
|
| 80 |
-
image_tensors = image_tensors.view(b, -1, 3, vit_input_resolution, vit_input_resolution)
|
| 81 |
-
real_images = []
|
| 82 |
-
|
| 83 |
-
all_nums = 0
|
| 84 |
-
img_index = []
|
| 85 |
-
for s in range(len(images_pos)):
|
| 86 |
-
real_image_num = 0
|
| 87 |
-
for (im_s, im_e,index) in images_pos[s]:
|
| 88 |
-
if im_s == -1:
|
| 89 |
-
break
|
| 90 |
-
real_image_num += 1
|
| 91 |
-
all_nums += 1
|
| 92 |
-
img_index.append(index)
|
| 93 |
-
|
| 94 |
-
real_image_nums.append(real_image_num)
|
| 95 |
-
real_images.append(image_tensors[s][:real_image_num])
|
| 96 |
-
|
| 97 |
-
if vit_patch == 1:
|
| 98 |
-
img_index = None
|
| 99 |
-
|
| 100 |
-
if all_nums == 0:
|
| 101 |
-
# when no input image, initialize a fake tensor
|
| 102 |
-
img_input = torch.rand(b, 3, vit_input_resolution, vit_input_resolution).cuda().type(image_tensors.dtype)
|
| 103 |
-
img_embs = vit(img_input)
|
| 104 |
-
img_embs = vit_linear_encoder(img_embs)
|
| 105 |
-
else:
|
| 106 |
-
img_input = torch.cat(real_images)
|
| 107 |
-
img_embs = vit(img_input, img_index = img_index)
|
| 108 |
-
img_embs = vit_linear_encoder(img_embs)
|
| 109 |
-
|
| 110 |
-
encoder_input = encoder_input.clone()
|
| 111 |
-
start = 0
|
| 112 |
-
if all_nums > 0:
|
| 113 |
-
for s, real_image_len in enumerate(real_image_nums):
|
| 114 |
-
current_embs = img_embs[start:start + real_image_len, :] #[30, 256, 4096]
|
| 115 |
-
for ss in range(current_embs.shape[0]):
|
| 116 |
-
im_s, im_e, index = images_pos[s, ss]
|
| 117 |
-
# 子图特征更少
|
| 118 |
-
if index > 0 and vit_patch_mlp:
|
| 119 |
-
encoder_input[s, im_s:im_e,] = current_embs[ss, :(im_e-im_s)]
|
| 120 |
-
else:
|
| 121 |
-
encoder_input[s, im_s:im_e] = current_embs[ss, :]
|
| 122 |
-
start = start + real_image_len
|
| 123 |
-
else:
|
| 124 |
-
# when no input image, to mask vit value
|
| 125 |
-
for s in range(b):
|
| 126 |
-
vit_mask = torch.zeros([vit_token, 1]).cuda()
|
| 127 |
-
current_embs = img_embs[:, start:start + 1]
|
| 128 |
-
encoder_input[1:vit_token + 1, s] = encoder_input[1:vit_token + 1, s] * (1 - vit_mask) + current_embs[:, 0, :] * vit_mask
|
| 129 |
-
start = start + 1
|
| 130 |
-
return encoder_input, input_ids
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
def group_images_by_max_seq_len(
|
| 134 |
-
images: List[List[Tensor]], patch_size: int,
|
| 135 |
-
max_seq_len: int, adaptor_patch_size: int,
|
| 136 |
-
add_cls_token: bool = False) -> List[List[Tensor]]:
|
| 137 |
-
|
| 138 |
-
groups = []
|
| 139 |
-
group = []
|
| 140 |
-
pos_groups = []
|
| 141 |
-
seq_len = 0
|
| 142 |
-
num_images = 0
|
| 143 |
-
for image_list in images:
|
| 144 |
-
pos_group = []
|
| 145 |
-
for image in image_list:
|
| 146 |
-
num_images += 1
|
| 147 |
-
assert isinstance(image, Tensor)
|
| 148 |
-
|
| 149 |
-
image_dims = image.shape[-2:]
|
| 150 |
-
ph, pw = map(lambda t: t // patch_size, image_dims)
|
| 151 |
-
|
| 152 |
-
image_seq_len = (ph * pw)
|
| 153 |
-
new_image_seq_len = image_seq_len
|
| 154 |
-
grouped_len = seq_len + image_seq_len
|
| 155 |
-
if add_cls_token:
|
| 156 |
-
new_image_seq_len += 1
|
| 157 |
-
grouped_len += num_images
|
| 158 |
-
|
| 159 |
-
assert new_image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length'
|
| 160 |
-
|
| 161 |
-
if grouped_len > max_seq_len:
|
| 162 |
-
groups.append(group)
|
| 163 |
-
group = []
|
| 164 |
-
seq_len = 0
|
| 165 |
-
num_images = 1
|
| 166 |
-
|
| 167 |
-
group.append(image)
|
| 168 |
-
start = seq_len // (adaptor_patch_size * adaptor_patch_size)
|
| 169 |
-
end = start + image_seq_len//(adaptor_patch_size * adaptor_patch_size)
|
| 170 |
-
batch_idx = len(groups)
|
| 171 |
-
pos_group.append([batch_idx, start, end])
|
| 172 |
-
seq_len += image_seq_len
|
| 173 |
-
pos_groups.append(pos_group)
|
| 174 |
-
|
| 175 |
-
if len(group) > 0:
|
| 176 |
-
groups.append(group)
|
| 177 |
-
|
| 178 |
-
return groups, pos_groups
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
class AnyResCLIPVisionEmbeddings(nn.Module):
|
| 182 |
-
def __init__(self, config: CLIPVisionConfig):
|
| 183 |
-
super().__init__()
|
| 184 |
-
|
| 185 |
-
self.config = config
|
| 186 |
-
# self.sparse_attn_mask = args.sparse_attn_mask
|
| 187 |
-
# self.use_flash_attn = args.use_flash_attn
|
| 188 |
-
self.embed_dim = config.hidden_size
|
| 189 |
-
self.image_size = config.max_image_size
|
| 190 |
-
self.patch_size = config.patch_size
|
| 191 |
-
self.max_seq_len = config.max_vit_seq_len
|
| 192 |
-
self.adaptor_patch_size = config.adaptor_patch_size
|
| 193 |
-
self.anyres_vit_two_views = config.anyres_vit_two_views
|
| 194 |
-
self.vit_add_patchemb_bias = config.vit_add_patchemb_bias
|
| 195 |
-
self.vit_remove_prenorm = config.vit_remove_prenorm
|
| 196 |
-
|
| 197 |
-
self.patch_embedding = nn.Conv2d(
|
| 198 |
-
in_channels=config.num_channels,
|
| 199 |
-
out_channels=self.embed_dim,
|
| 200 |
-
kernel_size=self.patch_size,
|
| 201 |
-
stride=self.patch_size,
|
| 202 |
-
bias=self.vit_add_patchemb_bias,
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 206 |
-
self.skip_cls_token = True
|
| 207 |
-
|
| 208 |
-
# add interpolate_pos_encoding
|
| 209 |
-
if self.anyres_vit_two_views:
|
| 210 |
-
self.num_positions = self.num_patches
|
| 211 |
-
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim) * 0.02)
|
| 212 |
-
else:
|
| 213 |
-
self.num_positions = self.num_patches + 1
|
| 214 |
-
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
| 215 |
-
# self.position_ids = torch.arange(self.num_positions).expand((1, -1))
|
| 216 |
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 217 |
-
|
| 218 |
-
if not self.vit_remove_prenorm:
|
| 219 |
-
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 220 |
-
|
| 221 |
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 222 |
-
"""
|
| 223 |
-
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
| 224 |
-
resolution images.
|
| 225 |
-
|
| 226 |
-
Source:
|
| 227 |
-
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
| 228 |
-
"""
|
| 229 |
-
num_patches = embeddings.shape[1]
|
| 230 |
-
position_embeddings = self.position_embedding(self.position_ids)
|
| 231 |
-
patch_pos_embed = position_embeddings[:, 1:]
|
| 232 |
-
num_positions = position_embeddings.shape[1] - 1
|
| 233 |
-
if num_patches == num_positions and height == width:
|
| 234 |
-
return patch_pos_embed
|
| 235 |
-
# class_pos_embed = position_embeddings[:, 0]
|
| 236 |
-
dim = embeddings.shape[-1]
|
| 237 |
-
h0 = height // self.patch_size
|
| 238 |
-
w0 = width // self.patch_size
|
| 239 |
-
# we add a small number to avoid floating point error in the interpolation
|
| 240 |
-
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
| 241 |
-
h0, w0 = h0 + 0.1, w0 + 0.1
|
| 242 |
-
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
| 243 |
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
| 244 |
-
raw_type = patch_pos_embed.dtype
|
| 245 |
-
patch_pos_embed = nn.functional.interpolate(
|
| 246 |
-
patch_pos_embed.to(torch.float32, non_blocking=True),
|
| 247 |
-
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
|
| 248 |
-
mode="bilinear",
|
| 249 |
-
align_corners=False,
|
| 250 |
-
)
|
| 251 |
-
patch_pos_embed = patch_pos_embed.to(raw_type, non_blocking=True)
|
| 252 |
-
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
|
| 253 |
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 254 |
-
return patch_pos_embed
|
| 255 |
-
|
| 256 |
-
def rescale_positional_embedding(self, out_size):
|
| 257 |
-
h, w = out_size
|
| 258 |
-
pos_embed_shape = int((self.position_embedding.shape[1]) ** 0.5)
|
| 259 |
-
if (h, w) == (pos_embed_shape, pos_embed_shape):
|
| 260 |
-
return self.position_embedding
|
| 261 |
-
rescaled_positional_embedding = \
|
| 262 |
-
self.position_embedding.new_zeros(1, h*w, self.position_embedding.shape[2])
|
| 263 |
-
pe_2d = self.position_embedding[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
|
| 264 |
-
pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
|
| 265 |
-
rescaled_positional_embedding[0] = pe_2d.T.contiguous()
|
| 266 |
-
return rescaled_positional_embedding
|
| 267 |
-
|
| 268 |
-
def forward_single(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 269 |
-
if pixel_values.ndim == 3:
|
| 270 |
-
pixel_values = pixel_values[None]
|
| 271 |
-
batch_size, num_channels, height, width = pixel_values.shape
|
| 272 |
-
|
| 273 |
-
if self.anyres_vit_two_views:
|
| 274 |
-
# padding
|
| 275 |
-
pad_h = (self.patch_size - height % self.patch_size) % self.patch_size
|
| 276 |
-
pad_w = (self.patch_size - width % self.patch_size) % self.patch_size
|
| 277 |
-
pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
|
| 278 |
-
|
| 279 |
-
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
| 280 |
-
b, c, h, w = patch_embeds.shape
|
| 281 |
-
|
| 282 |
-
# (b, hw, c)
|
| 283 |
-
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 284 |
-
if self.anyres_vit_two_views:
|
| 285 |
-
embeddings = patch_embeds + self.rescale_positional_embedding(out_size=(h, w))
|
| 286 |
-
else:
|
| 287 |
-
embeddings = patch_embeds + self.interpolate_pos_encoding(patch_embeds, height, width)
|
| 288 |
-
if not self.vit_remove_prenorm:
|
| 289 |
-
embeddings = self.pre_layernorm(embeddings)
|
| 290 |
-
return embeddings, (h, w)
|
| 291 |
-
|
| 292 |
-
def forward(self, images: List[List[Tensor]]):
|
| 293 |
-
'''
|
| 294 |
-
Input:
|
| 295 |
-
images: List[List[Tensor]]
|
| 296 |
-
|
| 297 |
-
Return:
|
| 298 |
-
embeddings: Tensor (B, L, E)
|
| 299 |
-
attn_mask: Tensor (B, L, 2)
|
| 300 |
-
pos_groups: List[List[(batch_idx, start, end)]]
|
| 301 |
-
'''
|
| 302 |
-
batched_images, pos_groups = group_images_by_max_seq_len(
|
| 303 |
-
images, self.patch_size, self.max_seq_len, self.adaptor_patch_size, add_cls_token=not self.skip_cls_token)
|
| 304 |
-
max_seq_len = self.max_seq_len
|
| 305 |
-
|
| 306 |
-
# batched_images is a list of a list
|
| 307 |
-
B = len(batched_images)
|
| 308 |
-
L = max_seq_len
|
| 309 |
-
E = self.embed_dim
|
| 310 |
-
|
| 311 |
-
embeddings = torch.zeros(B, L, E, dtype=self.config.torch_dtype, requires_grad=True).cuda(non_blocking=True)
|
| 312 |
-
attn_mask = embeddings.new_full((B, 1, L, L), False, dtype=torch.bool) # True presents compute
|
| 313 |
-
assert len(images) == len(pos_groups), (len(images), len(pos_groups))
|
| 314 |
-
|
| 315 |
-
batch_images = []
|
| 316 |
-
batch_pos = []
|
| 317 |
-
for images_i, pos_group in zip(images, pos_groups):
|
| 318 |
-
assert len(images_i) == len(pos_group), (len(images_i), len(pos_group))
|
| 319 |
-
for image, pos in zip(images_i, pos_group):
|
| 320 |
-
batch_idx, start, end = pos
|
| 321 |
-
a2 = self.adaptor_patch_size ** 2
|
| 322 |
-
# recover the real number of the input image tokens
|
| 323 |
-
start *= a2
|
| 324 |
-
end *= a2
|
| 325 |
-
emb, _ = self.forward_single(image)
|
| 326 |
-
assert emb.ndim == 3, '(B, L, E)'
|
| 327 |
-
embeddings[batch_idx, start:end] = emb
|
| 328 |
-
attn_mask[batch_idx, :, start:end, start:end] = True
|
| 329 |
-
return embeddings, attn_mask, pos_groups
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
class CLIPVisionEmbeddings(nn.Module):
|
| 333 |
-
def __init__(self, config: CLIPVisionConfig, add_pre_layernorm=False, skip_cls_token=True, vit_patch=1):
|
| 334 |
-
super().__init__()
|
| 335 |
-
self.config = config
|
| 336 |
-
self.embed_dim = config.hidden_size
|
| 337 |
-
self.image_size = config.image_size
|
| 338 |
-
self.image_size = config.vit_input_resolution
|
| 339 |
-
self.patch_size = config.patch_size
|
| 340 |
-
|
| 341 |
-
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
| 342 |
-
|
| 343 |
-
self.patch_embedding = nn.Conv2d(
|
| 344 |
-
in_channels=config.num_channels,
|
| 345 |
-
out_channels=self.embed_dim,
|
| 346 |
-
kernel_size=self.patch_size,
|
| 347 |
-
stride=self.patch_size,
|
| 348 |
-
bias=False,
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 352 |
-
|
| 353 |
-
self.skip_cls_token = skip_cls_token
|
| 354 |
-
|
| 355 |
-
self.num_positions = self.num_patches + 1
|
| 356 |
-
|
| 357 |
-
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
| 358 |
-
if vit_patch > 1:
|
| 359 |
-
self.position_embedding = nn.Embedding(self.num_patches * (vit_patch ** 2 + 1) + 1, self.embed_dim)
|
| 360 |
-
# 0 支持最大16张图,目前写死了,如需其他的需要额外定义参数
|
| 361 |
-
elif vit_patch == 0:
|
| 362 |
-
self.position_embedding = nn.Embedding(self.num_patches * (16 ** 2 + 1) + 1, self.embed_dim)
|
| 363 |
-
else:
|
| 364 |
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 365 |
-
|
| 366 |
-
if add_pre_layernorm:
|
| 367 |
-
self.pre_layernorm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 368 |
-
else:
|
| 369 |
-
self.pre_layernorm = None
|
| 370 |
-
|
| 371 |
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 372 |
-
"""
|
| 373 |
-
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
| 374 |
-
resolution images.
|
| 375 |
-
|
| 376 |
-
Source:
|
| 377 |
-
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
| 378 |
-
"""
|
| 379 |
-
num_patches = embeddings.shape[1] - 1
|
| 380 |
-
position_embeddings = self.position_embedding(self.position_ids)
|
| 381 |
-
num_positions = position_embeddings.shape[1] - 1
|
| 382 |
-
if num_patches == num_positions and height == width:
|
| 383 |
-
return position_embeddings
|
| 384 |
-
class_pos_embed = position_embeddings[:, 0]
|
| 385 |
-
patch_pos_embed = position_embeddings[:, 1:]
|
| 386 |
-
dim = embeddings.shape[-1]
|
| 387 |
-
h0 = height // self.config.patch_size
|
| 388 |
-
w0 = width // self.config.patch_size
|
| 389 |
-
# we add a small number to avoid floating point error in the interpolation
|
| 390 |
-
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
| 391 |
-
h0, w0 = h0 + 0.1, w0 + 0.1
|
| 392 |
-
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
| 393 |
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
| 394 |
-
raw_type = patch_pos_embed.dtype
|
| 395 |
-
patch_pos_embed = nn.functional.interpolate(
|
| 396 |
-
patch_pos_embed.float(),
|
| 397 |
-
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
|
| 398 |
-
mode="bicubic",
|
| 399 |
-
align_corners=False,
|
| 400 |
-
)
|
| 401 |
-
# print(patch_pos_embed.shape)
|
| 402 |
-
patch_pos_embed = patch_pos_embed.to(raw_type)
|
| 403 |
-
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
|
| 404 |
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 405 |
-
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False, img_index=None) -> torch.Tensor:
|
| 409 |
-
batch_size, num_channels, height, width = pixel_values.shape
|
| 410 |
-
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
| 411 |
-
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 412 |
-
if self.skip_cls_token:
|
| 413 |
-
embeddings = patch_embeds
|
| 414 |
-
if img_index is None:
|
| 415 |
-
position_ids = self.position_ids[:,1:]
|
| 416 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
| 417 |
-
else:
|
| 418 |
-
position_ids = (torch.tensor(img_index).cuda() * (self.num_positions - 1)).unsqueeze(1).repeat(1, self.num_positions - 1) \
|
| 419 |
-
+ self.position_ids.expand(batch_size, -1)[:, 1:]
|
| 420 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
| 421 |
-
else:
|
| 422 |
-
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
| 423 |
-
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 424 |
-
if interpolate_pos_encoding:
|
| 425 |
-
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 426 |
-
else:
|
| 427 |
-
if img_index is None:
|
| 428 |
-
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 429 |
-
else:
|
| 430 |
-
position_ids = self.position_ids.expand(batch_size,-1)[:,0].unsqueeze(1)
|
| 431 |
-
new_position = (torch.tensor(img_index).cuda() * (self.num_positions -1)).unsqueeze(1).repeat(1,self.num_positions-1) + self.position_ids.expand(batch_size,-1)[:,1:]
|
| 432 |
-
position_ids = torch.cat([position_ids,new_position],dim=1)
|
| 433 |
-
embeddings = embeddings + self.position_embedding(position_ids)
|
| 434 |
-
if self.pre_layernorm is not None:
|
| 435 |
-
embeddings = self.pre_layernorm(embeddings)
|
| 436 |
-
return embeddings
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
class NaVitTransformer(nn.Module):
|
| 440 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
|
| 441 |
-
super().__init__()
|
| 442 |
-
self.config = config
|
| 443 |
-
self.vit_config = vit_config
|
| 444 |
-
with self.prepare_args(config, vit_config):
|
| 445 |
-
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 446 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 447 |
-
self.layers = nn.ModuleList(
|
| 448 |
-
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 449 |
-
)
|
| 450 |
-
|
| 451 |
-
@contextmanager
|
| 452 |
-
def prepare_args(self, config, vit_config):
|
| 453 |
-
hidden_act = config.hidden_act
|
| 454 |
-
hidden_size = config.hidden_size
|
| 455 |
-
ffn_hidden_size = config.intermediate_size
|
| 456 |
-
num_attention_heads = config.num_attention_heads
|
| 457 |
-
num_key_value_heads = config.num_key_value_heads
|
| 458 |
-
attention_head_dim = config.attention_head_dim
|
| 459 |
-
use_qk_norm = config.use_qk_norm
|
| 460 |
-
use_rotary_pos_emb = config.use_rotary_pos_emb
|
| 461 |
-
num_hidden_layers = config.num_hidden_layers
|
| 462 |
-
rms_norm_eps = config.rms_norm_eps
|
| 463 |
-
attention_dropout = config.attention_dropout
|
| 464 |
-
# hidden_dropout = config.hidden_dropout
|
| 465 |
-
norm_type = config.norm_type
|
| 466 |
-
attention_bias = config.attention_bias
|
| 467 |
-
mlp_bias = config.mlp_bias
|
| 468 |
-
use_mla = config.use_mla
|
| 469 |
-
num_experts = config.num_experts
|
| 470 |
-
_attn_implementation = config._attn_implementation
|
| 471 |
-
|
| 472 |
-
config.hidden_act = vit_config.hidden_act
|
| 473 |
-
config.hidden_size = vit_config.hidden_size
|
| 474 |
-
config.intermediate_size = vit_config.intermediate_size
|
| 475 |
-
config.num_attention_heads = vit_config.num_attention_heads
|
| 476 |
-
config.num_key_value_heads = None
|
| 477 |
-
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
|
| 478 |
-
config.use_qk_norm = False
|
| 479 |
-
config.use_rotary_pos_emb = False
|
| 480 |
-
config.num_hidden_layers = vit_config.num_hidden_layers
|
| 481 |
-
config.rms_norm_eps = vit_config.layer_norm_eps
|
| 482 |
-
config.attention_dropout = vit_config.attention_dropout
|
| 483 |
-
# config.hidden_dropout = vit_config.hidden_dropout
|
| 484 |
-
config.norm_type = config.vit_norm_type
|
| 485 |
-
config.attention_bias = True
|
| 486 |
-
config.mlp_bias = True
|
| 487 |
-
config.use_mla = False
|
| 488 |
-
config.num_experts = 1
|
| 489 |
-
config._attn_implementation = "eager"
|
| 490 |
-
|
| 491 |
-
yield
|
| 492 |
-
config.hidden_act = hidden_act
|
| 493 |
-
config.hidden_size = hidden_size
|
| 494 |
-
config.intermediate_size = ffn_hidden_size
|
| 495 |
-
config.num_attention_heads = num_attention_heads
|
| 496 |
-
config.num_key_value_heads = num_key_value_heads
|
| 497 |
-
config.attention_head_dim = attention_head_dim
|
| 498 |
-
config.use_qk_norm = use_qk_norm
|
| 499 |
-
config.use_rotary_pos_emb = use_rotary_pos_emb
|
| 500 |
-
config.num_hidden_layers = num_hidden_layers
|
| 501 |
-
config.rms_norm_eps = rms_norm_eps
|
| 502 |
-
config.attention_dropout = attention_dropout
|
| 503 |
-
# config.hidden_dropout = hidden_dropout
|
| 504 |
-
config.attention_bias = attention_bias
|
| 505 |
-
config.mlp_bias = mlp_bias
|
| 506 |
-
config.norm_type = norm_type
|
| 507 |
-
config.use_mla = use_mla
|
| 508 |
-
config.num_experts = num_experts
|
| 509 |
-
config._attn_implementation = _attn_implementation
|
| 510 |
-
|
| 511 |
-
def forward(
|
| 512 |
-
self,
|
| 513 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
| 514 |
-
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 515 |
-
|
| 516 |
-
hidden_states, attention_mask, img_pos = self.embeddings(pixel_values)
|
| 517 |
-
attention_mask = attention_mask.int()
|
| 518 |
-
batch_size, seq_length, _ = hidden_states.shape
|
| 519 |
-
past_key_values_length = 0
|
| 520 |
-
|
| 521 |
-
if self._use_flash_attention_2:
|
| 522 |
-
# 2d mask is passed through the layers
|
| 523 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 524 |
-
elif self._use_sdpa:
|
| 525 |
-
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 526 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
| 527 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 528 |
-
attention_mask,
|
| 529 |
-
(batch_size, seq_length),
|
| 530 |
-
hidden_states,
|
| 531 |
-
past_key_values_length,
|
| 532 |
-
)
|
| 533 |
-
else:
|
| 534 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
| 535 |
-
attention_mask,
|
| 536 |
-
(batch_size, seq_length),
|
| 537 |
-
hidden_states,
|
| 538 |
-
past_key_values_length,
|
| 539 |
-
)
|
| 540 |
-
|
| 541 |
-
for layer_idx, decoder_layer in enumerate(self.layers):
|
| 542 |
-
layer_outputs = decoder_layer(
|
| 543 |
-
hidden_states,
|
| 544 |
-
attention_mask=attention_mask
|
| 545 |
-
)
|
| 546 |
-
hidden_states = layer_outputs[0]
|
| 547 |
-
|
| 548 |
-
return hidden_states, img_pos
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
class AnyResVitTransformer(NaVitTransformer):
|
| 552 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig, anyres_vit_max_image_size):
|
| 553 |
-
super().__init__(config, vit_config)
|
| 554 |
-
old_anyres_vit_max_image_size = vit_config.max_image_size
|
| 555 |
-
anyres_vit_max_image_size = anyres_vit_max_image_size or old_anyres_vit_max_image_size
|
| 556 |
-
vit_config.max_image_size = anyres_vit_max_image_size
|
| 557 |
-
vit_config.torch_dtype = config.torch_dtype
|
| 558 |
-
vit_config.anyres_vit_two_views = config.anyres_vit_two_views
|
| 559 |
-
vit_config.vit_remove_prenorm = config.vit_remove_prenorm
|
| 560 |
-
vit_config.vit_add_patchemb_bias = config.vit_add_patchemb_bias
|
| 561 |
-
self.embeddings = AnyResCLIPVisionEmbeddings(vit_config)
|
| 562 |
-
vit_config.max_image_size = old_anyres_vit_max_image_size
|
| 563 |
-
|
| 564 |
-
def fix_embeddings_fn(self, pixel_values):
|
| 565 |
-
# (B, L, E)
|
| 566 |
-
embeddings, hw = self.embeddings.forward_single(pixel_values)
|
| 567 |
-
embeddings = self.embeddings.pre_layernorm(embeddings)
|
| 568 |
-
return embeddings
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
class CLIPVisionTransformer(nn.Module):
|
| 572 |
-
def __init__(self, config: HunYuanConfig, vit_config: CLIPVisionConfig):
|
| 573 |
-
super().__init__()
|
| 574 |
-
embed_dim = vit_config.hidden_size
|
| 575 |
-
|
| 576 |
-
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=vit_config.layer_norm_eps)
|
| 577 |
-
self.embeddings = CLIPVisionEmbeddings(vit_config, skip_cls_token=config.skip_cls_token, vit_patch=config.vit_patch)
|
| 578 |
-
|
| 579 |
-
with self.prepare_args(config, vit_config):
|
| 580 |
-
self.layers = nn.ModuleList(
|
| 581 |
-
[HunYuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
@contextmanager
|
| 585 |
-
def prepare_args(self, config, vit_config):
|
| 586 |
-
hidden_act = config.hidden_act
|
| 587 |
-
hidden_size = config.hidden_size
|
| 588 |
-
ffn_hidden_size = config.intermediate_size
|
| 589 |
-
num_attention_heads = config.num_attention_heads
|
| 590 |
-
num_key_value_heads = config.num_key_value_heads
|
| 591 |
-
attention_head_dim = config.attention_head_dim
|
| 592 |
-
use_qk_norm = config.use_qk_norm
|
| 593 |
-
use_rotary_pos_emb = config.use_rotary_pos_emb
|
| 594 |
-
num_hidden_layers = config.num_hidden_layers
|
| 595 |
-
rms_norm_eps = config.rms_norm_eps
|
| 596 |
-
attention_dropout = config.attention_dropout
|
| 597 |
-
# hidden_dropout = config.hidden_dropout
|
| 598 |
-
norm_type = config.norm_type
|
| 599 |
-
attention_bias = config.attention_bias
|
| 600 |
-
mlp_bias = config.mlp_bias
|
| 601 |
-
use_mla = config.use_mla
|
| 602 |
-
num_experts = config.num_experts
|
| 603 |
-
_attn_implementation = config._attn_implementation
|
| 604 |
-
|
| 605 |
-
config.hidden_act = vit_config.hidden_act
|
| 606 |
-
config.hidden_size = vit_config.hidden_size
|
| 607 |
-
config.intermediate_size = vit_config.intermediate_size
|
| 608 |
-
config.num_attention_heads = vit_config.num_attention_heads
|
| 609 |
-
config.num_key_value_heads = None
|
| 610 |
-
config.attention_head_dim = vit_config.hidden_size // vit_config.num_attention_heads
|
| 611 |
-
config.use_qk_norm = False
|
| 612 |
-
config.use_rotary_pos_emb = False
|
| 613 |
-
config.num_hidden_layers = vit_config.num_hidden_layers
|
| 614 |
-
config.rms_norm_eps = vit_config.layer_norm_eps
|
| 615 |
-
config.attention_dropout = vit_config.attention_dropout
|
| 616 |
-
# config.hidden_dropout = 0.0
|
| 617 |
-
config.norm_type = "fused"
|
| 618 |
-
config.attention_bias = True
|
| 619 |
-
config.mlp_bias = True
|
| 620 |
-
config.use_mla = False
|
| 621 |
-
config.num_experts = 1
|
| 622 |
-
config._attn_implementation = "eager"
|
| 623 |
-
|
| 624 |
-
yield
|
| 625 |
-
|
| 626 |
-
config.hidden_act = hidden_act
|
| 627 |
-
config.hidden_size = hidden_size
|
| 628 |
-
config.intermediate_size = ffn_hidden_size
|
| 629 |
-
config.num_attention_heads = num_attention_heads
|
| 630 |
-
config.num_key_value_heads = num_key_value_heads
|
| 631 |
-
config.attention_head_dim = attention_head_dim
|
| 632 |
-
config.use_qk_norm = use_qk_norm
|
| 633 |
-
config.use_rotary_pos_emb = use_rotary_pos_emb
|
| 634 |
-
config.num_hidden_layers = num_hidden_layers
|
| 635 |
-
config.rms_norm_eps = rms_norm_eps
|
| 636 |
-
config.attention_dropout = attention_dropout
|
| 637 |
-
# config.hidden_dropout = hidden_dropout
|
| 638 |
-
config.norm_type = norm_type
|
| 639 |
-
config.attention_bias = attention_bias
|
| 640 |
-
config.mlp_bias = mlp_bias
|
| 641 |
-
config.use_mla = use_mla
|
| 642 |
-
config.num_experts = num_experts
|
| 643 |
-
config._attn_implementation = _attn_implementation
|
| 644 |
-
|
| 645 |
-
def forward(
|
| 646 |
-
self,
|
| 647 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
| 648 |
-
interpolate_pos_encoding: Optional[bool] = None,
|
| 649 |
-
img_index=None
|
| 650 |
-
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 651 |
-
r"""
|
| 652 |
-
Returns:
|
| 653 |
-
|
| 654 |
-
"""
|
| 655 |
-
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, img_index=img_index)
|
| 656 |
-
hidden_states = self.pre_layrnorm(hidden_states)
|
| 657 |
-
batch = hidden_states.shape[0]
|
| 658 |
-
seq_len = hidden_states.shape[1]
|
| 659 |
-
device = hidden_states.device
|
| 660 |
-
attention_mask = torch.ones(batch, 1, seq_len, seq_len, dtype=torch.float32, device=device)
|
| 661 |
-
|
| 662 |
-
for layer_idx, decoder_layer in enumerate(self.layers):
|
| 663 |
-
layer_outputs = decoder_layer(
|
| 664 |
-
hidden_states,
|
| 665 |
-
attention_mask=attention_mask
|
| 666 |
-
)
|
| 667 |
-
hidden_states = layer_outputs[0]
|
| 668 |
-
|
| 669 |
-
return hidden_states
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
class Vit(torch.nn.Module):
|
| 673 |
-
def __init__(self, config, resampler_token=64, pool_rate=2):
|
| 674 |
-
super().__init__()
|
| 675 |
-
self.config = config
|
| 676 |
-
self.vit_mapping_type = config.vit_mapping_type
|
| 677 |
-
self.anyres_vit_max_image_size = config.anyres_vit_max_image_size
|
| 678 |
-
self.skip_cls_token = config.skip_cls_token
|
| 679 |
-
self.pool_rate = pool_rate
|
| 680 |
-
self.vit_type = self.config.vit_type
|
| 681 |
-
self.anyres_vit_two_views = self.config.anyres_vit_two_views
|
| 682 |
-
if self.vit_type in ['Vit-g', 'Vit-bigG', 'NaVit', 'EvaVit', 'AnyResVit']:
|
| 683 |
-
self.img_init(resampler_token, config.vit_input_resolution, config.vit_mapping_type, pool_rate)
|
| 684 |
-
else:
|
| 685 |
-
raise NotImplementedError(f"unsupported vit type: {self.vit_type}")
|
| 686 |
-
|
| 687 |
-
def img_init(self, resampler_token=64, vit_input_resolution=224, vit_mapping_type='resampler', pool_rate=2):
|
| 688 |
-
if self.vit_type == 'AnyResVit':
|
| 689 |
-
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
|
| 690 |
-
self.vit_config = types.SimpleNamespace(**vit_config["vision_config"])
|
| 691 |
-
self.vit_config.image_size = vit_input_resolution
|
| 692 |
-
self.vit = AnyResVitTransformer(self.config, self.vit_config, self.anyres_vit_max_image_size)
|
| 693 |
-
elif self.vit_type == 'Vit-g':
|
| 694 |
-
vit_config = json.load(open(f"{self.config.vit_path}/config.json"))
|
| 695 |
-
self.vit_config = types.SimpleNamespace(**{**vit_config["vision_config_dict"],**vit_config["vision_config"]})
|
| 696 |
-
self.vit_config.vit_input_resolution = vit_input_resolution
|
| 697 |
-
self.vit = CLIPVisionTransformer(self.config, self.vit_config)
|
| 698 |
-
else:
|
| 699 |
-
assert False, "other vit_types are not supported"
|
| 700 |
-
|
| 701 |
-
if self.vit_mapping_type == 'simple_conv_mlp':
|
| 702 |
-
self.perceive = SimpleConvMlp(self.vit_config.hidden_size, self.config.hidden_size, self.config.anyres_pooling_size, \
|
| 703 |
-
self.config.vit_used_rms_norm, self.config.rms_norm_eps, poolmlp=False, twoview=True)
|
| 704 |
-
elif self.vit_mapping_type == 'oryx_mlp':
|
| 705 |
-
self.perceive = OryxMLPv2(self.vit_config.hidden_size, self.config.hidden_size, twoview=True, use_pe=False)
|
| 706 |
-
elif self.vit_mapping_type == 'mlp':
|
| 707 |
-
self.mlp_depth = 2
|
| 708 |
-
# one mlp layer already in gpt_model.py
|
| 709 |
-
mlp_hidden_size = self.vit_config.hidden_size
|
| 710 |
-
if self.vit_type in ['NaVit', 'EvaVit']:
|
| 711 |
-
mlp_hidden_size *= self.vit_config.adaptor_patch_size **2
|
| 712 |
-
if self.mlp_depth > 1:
|
| 713 |
-
mlp_modules = [torch.nn.Linear(mlp_hidden_size, self.config.hidden_size), torch.nn.GELU()]
|
| 714 |
-
if self.vit_type in ['NaVit', 'EvaVit']:
|
| 715 |
-
for _ in range(1, self.mlp_depth):
|
| 716 |
-
mlp_modules.append(torch.nn.Linear(self.config.hidden_size, self.config.hidden_size))
|
| 717 |
-
mlp_modules.append(torch.nn.GELU())
|
| 718 |
-
self.perceive = torch.nn.Sequential(*mlp_modules)
|
| 719 |
-
else:
|
| 720 |
-
assert False, "other vit_mapping_types are not supported"
|
| 721 |
-
|
| 722 |
-
self.vit_patch_mlp = (self.config.vit_patch > 1 and self.vit_mapping_type == 'mlp') or self.config.vit_patch == 0
|
| 723 |
-
for name, param in self.named_parameters():
|
| 724 |
-
setattr(param, "is_vit_param", True)
|
| 725 |
-
|
| 726 |
-
def forward(self, images, img_index=None):
|
| 727 |
-
if self.vit_type in ['AnyResVit']:
|
| 728 |
-
dtype = self.config.torch_dtype
|
| 729 |
-
device = torch.cuda.current_device()
|
| 730 |
-
|
| 731 |
-
images_size = []
|
| 732 |
-
for i in range(len(images)):
|
| 733 |
-
images_size.append([])
|
| 734 |
-
for j in range(len(images[i])):
|
| 735 |
-
images_size[i].append((images[i][j].size()[1] // self.vit_config.patch_size, images[i][j].size()[2] // self.vit_config.patch_size))
|
| 736 |
-
|
| 737 |
-
images_feats, img_batch_pos = self.vit(pixel_values=images)
|
| 738 |
-
a2 = self.vit_config.adaptor_patch_size ** 2
|
| 739 |
-
|
| 740 |
-
if self.anyres_vit_two_views:
|
| 741 |
-
step = 2
|
| 742 |
-
else:
|
| 743 |
-
step = 1
|
| 744 |
-
perceive_fn = lambda x, img_size, is_video: self.perceive(x, img_size, is_video=is_video)
|
| 745 |
-
images_list = []
|
| 746 |
-
images_fix_i = 0
|
| 747 |
-
num_img_batch_pos = len(img_batch_pos)
|
| 748 |
-
for i in range(num_img_batch_pos): # batch_id
|
| 749 |
-
for j in range(0, len(img_batch_pos[i]), step):
|
| 750 |
-
if self.anyres_vit_two_views:
|
| 751 |
-
lower_idx, lower_begin, lower_end = img_batch_pos[i][j]
|
| 752 |
-
lower_begin = lower_begin * a2
|
| 753 |
-
lower_end = lower_end * a2
|
| 754 |
-
higher_idx, higher_begin, higher_end = img_batch_pos[i][j + 1]
|
| 755 |
-
higher_begin = higher_begin * a2
|
| 756 |
-
higher_end = higher_end * a2
|
| 757 |
-
lower_res_feat = images_feats[lower_idx, lower_begin:lower_end].unsqueeze(0)
|
| 758 |
-
higher_res_feat = images_feats[higher_idx, higher_begin:higher_end].unsqueeze(0)
|
| 759 |
-
lower_images_size = images_size[i][j]
|
| 760 |
-
higher_images_size = images_size[i][j + 1]
|
| 761 |
-
images_list.append(self.perceive(lower_res_feat, lower_images_size, higher_res_feat, higher_images_size))
|
| 762 |
-
else:
|
| 763 |
-
idx, begin, end = img_batch_pos[i][j]
|
| 764 |
-
begin = begin * a2
|
| 765 |
-
end = end * a2
|
| 766 |
-
is_video = hasattr(images[i][j],'_is_video') and images[i][j]._is_video
|
| 767 |
-
images_list.append(perceive_fn(images_feats[idx, begin:end].unsqueeze(0), images_size[i][j], is_video=is_video))
|
| 768 |
-
|
| 769 |
-
images = torch.cat(images_list, dim=1)
|
| 770 |
-
|
| 771 |
-
new_batch_pos = []
|
| 772 |
-
k = 0; cur_len = 0
|
| 773 |
-
for i in range(len(images_size)):
|
| 774 |
-
new_batch_pos.append([])
|
| 775 |
-
for j in range(0, len(images_size[i]), step):
|
| 776 |
-
new_pos = [0, cur_len, cur_len + images_list[k].size(1)]
|
| 777 |
-
cur_len += images_list[k].size(1)
|
| 778 |
-
k += 1
|
| 779 |
-
new_batch_pos[i].append(new_pos)
|
| 780 |
-
return images, new_batch_pos
|
| 781 |
-
elif self.vit_type == 'Vit-g':
|
| 782 |
-
images = self.vit(pixel_values=images, interpolate_pos_encoding=False, img_index=img_index)
|
| 783 |
-
else:
|
| 784 |
-
assert False, "other vit_types are not supported"
|
| 785 |
-
|
| 786 |
-
if self.vit_mapping_type == 'mlp':
|
| 787 |
-
if self.vit_type in ['Vit-g'] and not self.skip_cls_token:
|
| 788 |
-
images = images[:,1:,:]
|
| 789 |
-
b, v, d = images.shape
|
| 790 |
-
s = int(math.sqrt(v))
|
| 791 |
-
images = images.reshape(b, s, s, d)
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
if self.vit_patch_mlp and img_index is not None:
|
| 795 |
-
L_tensor = torch.tensor(img_index)
|
| 796 |
-
device = images.device
|
| 797 |
-
# 获取子图位置
|
| 798 |
-
nonzero_indices = torch.nonzero(L_tensor).squeeze().to(device)
|
| 799 |
-
# 获取主图位置
|
| 800 |
-
zero_indices = torch.nonzero(L_tensor == 0).squeeze().to(device)
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
images_nonzero = torch.index_select(images,0, nonzero_indices).to(device)
|
| 804 |
-
images_zero = torch.index_select(images, 0, zero_indices).to(device)
|
| 805 |
-
|
| 806 |
-
# 子图额外多pool一次
|
| 807 |
-
pool_rate = self.pool_rate * 2
|
| 808 |
-
images_nonzero = images_nonzero.reshape(-1, s // pool_rate, pool_rate, s // pool_rate, pool_rate, d)
|
| 809 |
-
images_nonzero = images_nonzero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // pool_rate) * (s // pool_rate), d,
|
| 810 |
-
pool_rate*pool_rate).mean(-1)
|
| 811 |
-
|
| 812 |
-
# 为了组batch折衷方案
|
| 813 |
-
images_nonzero = F.pad(images_nonzero, (0, 0, 0, (s // self.pool_rate) * (s // self.pool_rate)- (s // pool_rate) * (s // pool_rate)))
|
| 814 |
-
images_zero = images_zero.reshape(-1, s // self.pool_rate, self.pool_rate, s // self.pool_rate, self.pool_rate, d)
|
| 815 |
-
images_zero = images_zero.permute(0, 1, 3, 5, 2, 4).reshape(-1, (s // self.pool_rate) * (s // self.pool_rate), d,
|
| 816 |
-
self.pool_rate*self.pool_rate).mean(-1)
|
| 817 |
-
# 组batch
|
| 818 |
-
images = torch.zeros(b, (s // self.pool_rate) * (s // self.pool_rate), d).to(device).to(images.dtype)
|
| 819 |
-
images.index_copy_(0, nonzero_indices, images_nonzero)
|
| 820 |
-
images.index_copy_(0, zero_indices, images_zero)
|
| 821 |
-
|
| 822 |
-
if self.mlp_depth >= 2:
|
| 823 |
-
images = self.perceive(images)
|
| 824 |
-
else:
|
| 825 |
-
if s % self.pool_rate == 0:
|
| 826 |
-
images = images.reshape(b, s//self.pool_rate, self.pool_rate, s//self.pool_rate, self.pool_rate, d)
|
| 827 |
-
images = images.permute(0, 1, 3, 5, 2, 4).reshape(b, (s//self.pool_rate) * (s//self.pool_rate), d, -1).mean(-1)
|
| 828 |
-
if self.mlp_depth >= 2:
|
| 829 |
-
images = self.perceive(images)
|
| 830 |
-
else:
|
| 831 |
-
raise ValueError
|
| 832 |
-
return images
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
class SimpleConvMlp(nn.Module):
|
| 836 |
-
def __init__(self, in_channels, out_channels, anyres_pooling_size, vit_used_rms_norm, rms_norm_eps, twoview=False, poolmlp=True, cat_extra_token=True):
|
| 837 |
-
super().__init__()
|
| 838 |
-
|
| 839 |
-
embed_std = 1 / math.sqrt(out_channels)
|
| 840 |
-
if poolmlp:
|
| 841 |
-
# if args.learnable_mlp_pooling_size is not None:
|
| 842 |
-
# in_channels *= args.learnable_mlp_pooling_size ** 2
|
| 843 |
-
self.proj = nn.Sequential(
|
| 844 |
-
nn.Linear(in_channels, out_channels),
|
| 845 |
-
nn.GELU()
|
| 846 |
-
)
|
| 847 |
-
self.vit_linear_encoder = nn.Linear(out_channels, out_channels)
|
| 848 |
-
self.image_newline = nn.Parameter(
|
| 849 |
-
torch.randn(out_channels) * embed_std
|
| 850 |
-
)
|
| 851 |
-
else:
|
| 852 |
-
self.proj = nn.Sequential(
|
| 853 |
-
nn.Conv2d(in_channels, in_channels * 2, kernel_size=anyres_pooling_size, stride=anyres_pooling_size),
|
| 854 |
-
nn.GELU(),
|
| 855 |
-
nn.Conv2d(in_channels * 2, in_channels * 4, kernel_size=1),
|
| 856 |
-
)
|
| 857 |
-
self.mlp = nn.Linear(in_channels * 4, out_channels)
|
| 858 |
-
self.image_newline = nn.Parameter(
|
| 859 |
-
torch.randn(in_channels * 4) * embed_std
|
| 860 |
-
)
|
| 861 |
-
self.poolmlp = poolmlp
|
| 862 |
-
|
| 863 |
-
self.image_begin = nn.Parameter(
|
| 864 |
-
torch.randn(out_channels) * embed_std
|
| 865 |
-
)
|
| 866 |
-
self.image_end = nn.Parameter(
|
| 867 |
-
torch.randn(out_channels) * embed_std
|
| 868 |
-
)
|
| 869 |
-
|
| 870 |
-
if twoview:
|
| 871 |
-
self.image_sep = nn.Parameter(
|
| 872 |
-
torch.randn(out_channels) * embed_std
|
| 873 |
-
)
|
| 874 |
-
|
| 875 |
-
self.cat_extra_token = cat_extra_token
|
| 876 |
-
self.use_rms_norm = vit_used_rms_norm
|
| 877 |
-
if self.use_rms_norm:
|
| 878 |
-
self.before_rms = HunYuanRMSNorm(in_channels, eps=rms_norm_eps)
|
| 879 |
-
self.after_rms = HunYuanRMSNorm(out_channels, eps=rms_norm_eps)
|
| 880 |
-
|
| 881 |
-
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
| 882 |
-
return self.single_forward(x=x, size=size, x2=x2, size2=size2, is_video=is_video)
|
| 883 |
-
|
| 884 |
-
def single_forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
| 885 |
-
remove_vit_special_tokens = False
|
| 886 |
-
learnable_mlp_pooling_size = None
|
| 887 |
-
if self.use_rms_norm:
|
| 888 |
-
x = self.before_rms(x)
|
| 889 |
-
h, w = size
|
| 890 |
-
dtype = x.dtype
|
| 891 |
-
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, h, w)
|
| 892 |
-
if self.poolmlp:
|
| 893 |
-
if learnable_mlp_pooling_size is None:
|
| 894 |
-
x = F.avg_pool2d(x, anyres_pooling_size)
|
| 895 |
-
x = self.proj(x.permute(0, 2, 3, 1)) # b, h, w, c
|
| 896 |
-
else:
|
| 897 |
-
x = x.permute(0, 2, 3, 1) # b, h, w, c
|
| 898 |
-
x = x.reshape(x.shape[0], h // learnable_mlp_pooling_size, learnable_mlp_pooling_size,
|
| 899 |
-
w // learnable_mlp_pooling_size, learnable_mlp_pooling_size, -1)
|
| 900 |
-
x = x.permute(0, 1, 3, 2, 4, 5).reshape(x.shape[0], h // learnable_mlp_pooling_size, w // learnable_mlp_pooling_size, -1)
|
| 901 |
-
x = self.proj(x)
|
| 902 |
-
x = self.vit_linear_encoder(x)
|
| 903 |
-
b, h, w, c = x.shape
|
| 904 |
-
if not remove_vit_special_tokens:
|
| 905 |
-
x = torch.cat([
|
| 906 |
-
x,
|
| 907 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype, non_blocking=True)
|
| 908 |
-
], dim=2)
|
| 909 |
-
x = x.reshape(b, -1, c)
|
| 910 |
-
else:
|
| 911 |
-
x = self.proj(x) #b,c,h,w
|
| 912 |
-
if is_video:
|
| 913 |
-
video_avgpool_size = 2
|
| 914 |
-
stride = 2
|
| 915 |
-
x = F.avg_pool2d(x, kernel_size = video_avgpool_size, stride = stride)
|
| 916 |
-
b, c, h, w = x.shape
|
| 917 |
-
if not remove_vit_special_tokens:
|
| 918 |
-
x = torch.cat([
|
| 919 |
-
x,
|
| 920 |
-
self.image_newline.reshape(1, c, 1, 1).expand(b, c, h, 1).to(dtype, non_blocking=True)
|
| 921 |
-
], dim=-1)
|
| 922 |
-
x = x.reshape(b, c, -1).permute(0, 2, 1)
|
| 923 |
-
x = self.mlp(x)
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
if x2 is not None:
|
| 927 |
-
h2, w2 = size2
|
| 928 |
-
x2 = x2.permute(0, 2, 1).reshape(x2.shape[0], -1, h2, w2)
|
| 929 |
-
if self.poolmlp:
|
| 930 |
-
x2 = F.avg_pool2d(x2, 2)
|
| 931 |
-
x2 = self.proj(x2.permute(0, 2, 3, 1)) # b, h, w, c
|
| 932 |
-
x2 = self.vit_linear_encoder(x2)
|
| 933 |
-
b2, h2, w2, c2 = x2.shape
|
| 934 |
-
if not remove_vit_special_tokens:
|
| 935 |
-
x2 = torch.cat([
|
| 936 |
-
x2,
|
| 937 |
-
self.image_newline.reshape(1, 1, 1, c2).expand(b2, h2, 1, c2).to(dtype, non_blocking=True)
|
| 938 |
-
], dim=2)
|
| 939 |
-
x2 = x2.reshape(b2, -1, c2)
|
| 940 |
-
else:
|
| 941 |
-
x2 = self.proj(x2)
|
| 942 |
-
b2, c2, h2, w2 = x2.shape
|
| 943 |
-
if not remove_vit_special_tokens:
|
| 944 |
-
x2 = torch.cat([
|
| 945 |
-
x2,
|
| 946 |
-
self.image_newline.reshape(1, c2, 1, 1).expand(b2, c2, h2, 1).to(dtype, non_blocking=True)
|
| 947 |
-
], dim=-1)
|
| 948 |
-
x2 = x2.reshape(b2, c2, -1).permute(0, 2, 1) #b,n,c
|
| 949 |
-
x2 = self.mlp(x2)
|
| 950 |
-
|
| 951 |
-
sep = self.image_sep.reshape(1, 1, -1).expand(b2, 1, x2.shape[-1]).to(dtype, non_blocking=True)
|
| 952 |
-
|
| 953 |
-
x = torch.cat([x, sep, x2], dim=1)
|
| 954 |
-
|
| 955 |
-
if self.cat_extra_token:
|
| 956 |
-
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
|
| 957 |
-
end = self.image_end.reshape(1, 1, -1).expand(b, 1, x.shape[-1]).to(dtype, non_blocking=True)
|
| 958 |
-
x = torch.cat([begin, x, end], dim=1)
|
| 959 |
-
|
| 960 |
-
if self.use_rms_norm:
|
| 961 |
-
return self.after_rms(x)
|
| 962 |
-
else:
|
| 963 |
-
return x
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
class NormalizedDwPooler(nn.Module):
|
| 967 |
-
def __init__(self, dim):
|
| 968 |
-
super().__init__()
|
| 969 |
-
self.dim = dim
|
| 970 |
-
self.predictor = nn.Sequential(
|
| 971 |
-
nn.Linear(dim*2, dim),
|
| 972 |
-
nn.GELU(),
|
| 973 |
-
nn.Linear(dim, dim),
|
| 974 |
-
)
|
| 975 |
-
|
| 976 |
-
def forward(self, x, forward_type='2x'):
|
| 977 |
-
B, H, W, C = x.shape
|
| 978 |
-
|
| 979 |
-
if forward_type == '2x':
|
| 980 |
-
new_x = x.reshape(B, H//2, 2, W//2, 2, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//2, W//2, 4, C)
|
| 981 |
-
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 4, -1)
|
| 982 |
-
fused_x = torch.cat([new_x, pooled_x], dim=-1)
|
| 983 |
-
elif forward_type == '1x':
|
| 984 |
-
new_x = x.reshape(B, H, W, 1, C)
|
| 985 |
-
fused_x = torch.cat([new_x, new_x], dim=-1)
|
| 986 |
-
elif forward_type == '4x':
|
| 987 |
-
new_x = x.reshape(B, H//4, 4, W//4, 4, C).permute(0, 1, 3, 2, 4, 5).reshape(B, H//4, W//4, 16, C)
|
| 988 |
-
pooled_x = new_x.mean(-2, keepdim=True).expand(-1, -1, -1, 16, -1)
|
| 989 |
-
fused_x = torch.cat([new_x, pooled_x], dim=-1)
|
| 990 |
-
|
| 991 |
-
score = self.predictor(fused_x)
|
| 992 |
-
normalized_score = F.softmax(score, dim=-2)
|
| 993 |
-
new_x = (new_x * normalized_score).sum(dim=-2)
|
| 994 |
-
return new_x
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
class OryxMLPv2(nn.Module):
|
| 998 |
-
def __init__(self, in_channels, out_channels, twoview=False, use_pe=False):
|
| 999 |
-
super().__init__()
|
| 1000 |
-
|
| 1001 |
-
self.proj1 = nn.Linear(in_channels, out_channels)
|
| 1002 |
-
self.proj2 = nn.Linear(out_channels, out_channels)
|
| 1003 |
-
self.act = nn.GELU()
|
| 1004 |
-
self.pooler = NormalizedDwPooler(out_channels)
|
| 1005 |
-
embed_std = 1 / math.sqrt(out_channels)
|
| 1006 |
-
|
| 1007 |
-
self.use_pe = use_pe
|
| 1008 |
-
if not use_pe:
|
| 1009 |
-
self.image_newline = nn.Parameter(
|
| 1010 |
-
torch.randn(out_channels) * embed_std
|
| 1011 |
-
)
|
| 1012 |
-
self.image_begin = nn.Parameter(
|
| 1013 |
-
torch.randn(out_channels) * embed_std
|
| 1014 |
-
)
|
| 1015 |
-
self.image_end = nn.Parameter(
|
| 1016 |
-
torch.randn(out_channels) * embed_std
|
| 1017 |
-
)
|
| 1018 |
-
|
| 1019 |
-
if twoview:
|
| 1020 |
-
self.image_sep = nn.Parameter(
|
| 1021 |
-
torch.randn(out_channels) * embed_std
|
| 1022 |
-
)
|
| 1023 |
-
|
| 1024 |
-
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), is_video=False):
|
| 1025 |
-
h, w = size
|
| 1026 |
-
dtype = x.dtype
|
| 1027 |
-
x = x.reshape(x.shape[0], h, w, -1)
|
| 1028 |
-
# x = self.pooler(x, forward_type=REGIONAL_POOL)
|
| 1029 |
-
# x = self.proj(x) #b,h,w, c
|
| 1030 |
-
x = self.proj1(x)
|
| 1031 |
-
x = self.pooler(x, forward_type='2x')
|
| 1032 |
-
x = self.act(x)
|
| 1033 |
-
x = self.proj2(x)
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
b, h, w, c = x.shape
|
| 1037 |
-
if not self.use_pe:
|
| 1038 |
-
x = torch.cat([
|
| 1039 |
-
x,
|
| 1040 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype)
|
| 1041 |
-
], dim=2)
|
| 1042 |
-
else:
|
| 1043 |
-
pe_h = torch.arange(h, dtype=torch.long, device=x.device).reshape(1, h, 1, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
|
| 1044 |
-
pe_w = torch.arange(w, dtype=torch.long, device=x.device).reshape(1, 1, w, 1).expand(b, h, w, 1).reshape(b, h*w, 1)
|
| 1045 |
-
pe = torch.cat([pe_h, pe_w], dim=-1)
|
| 1046 |
-
|
| 1047 |
-
x = x.reshape(b, -1, c)
|
| 1048 |
-
|
| 1049 |
-
if x2 is not None:
|
| 1050 |
-
h2, w2 = size2
|
| 1051 |
-
x2 = x2.reshape(x2.shape[0], h2, w2, -1)
|
| 1052 |
-
# x2 = self.pooler(x2, forward_type=REGIONAL_POOL)
|
| 1053 |
-
## x2 = self.proj(x2) #b,h,w, c
|
| 1054 |
-
x2 = self.proj1(x2)
|
| 1055 |
-
x2 = self.pooler(x2, forward_type='2x')
|
| 1056 |
-
x2 = self.act(x2)
|
| 1057 |
-
x2 = self.proj2(x2)
|
| 1058 |
-
|
| 1059 |
-
b2, h2, w2, c2 = x2.shape
|
| 1060 |
-
if not self.use_pe:
|
| 1061 |
-
x2 = torch.cat([
|
| 1062 |
-
x2,
|
| 1063 |
-
self.image_newline.reshape(1, 1, 1, c).expand(b, h2, 1, c).to(dtype)
|
| 1064 |
-
], dim=2)
|
| 1065 |
-
x2 = x2.reshape(b, -1, c)
|
| 1066 |
-
sep = self.image_sep.reshape(1, 1, -1).expand(b, 1, c2).to(dtype)
|
| 1067 |
-
x = torch.cat([x, sep, x2], dim=1)
|
| 1068 |
-
|
| 1069 |
-
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
| 1070 |
-
end = self.image_end.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
| 1071 |
-
x = torch.cat([begin, x, end], dim=1)
|
| 1072 |
-
# print(x.shape, x2.shape, h, w, h2, w2)
|
| 1073 |
-
# print("vit rank = " + str(torch.distributed.get_rank()) +" x = " + str(x))
|
| 1074 |
-
if self.use_pe:
|
| 1075 |
-
zero_pad = torch.zeros(b, 1, 2, device=x.device, dtype=torch.long)
|
| 1076 |
-
pe = torch.cat([zero_pad, pe, zero_pad], dim=1)
|
| 1077 |
-
assert pe.shape[1] == x.shape[1]
|
| 1078 |
-
return x, pe
|
| 1079 |
-
else:
|
| 1080 |
-
nseq = x.shape[1]
|
| 1081 |
-
fake_pe = torch.zeros(b, nseq, 2, device=x.device, dtype=torch.long)
|
| 1082 |
-
return x #, fake_pe
|
| 1083 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|