File size: 4,934 Bytes
5589706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


<p align="center">
 <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>


<p align="center">
    🤗&nbsp;<a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    <img src="https://avatars.githubusercontent.com/u/109945100?s=200&v=4" width="16"/>&nbsp;<a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
</p>

<p align="center">
    🖥️&nbsp;<a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕹️&nbsp;<a href="https://hunyuan.tencent.com/modelSquare/home/list"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp;
</p>

<p align="center">
    <a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a>
</p>


## Model Introduction

The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

### Key Features and Advantages

- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size

## Related News
* 2025.9.1 We have open-sourced  **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face.
<br>


&nbsp;

## 模型链接
| Model Name  | Description | Download |
| ----------- | ----------- |-----------
| Hunyuan-MT-7B  | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)|
| Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)|
| Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)|
| Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant     | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)|

## Prompts

### Prompt Template for ZH<=>XX Translation.

把下面的文本翻译成`<target_language>`,不要额外解释。

`<source_text>`

---

### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.

Translate the following segment into `<target_language>`, without additional explanation.

`<source_text>`


### Prompt Template for Hunyuan-MT-Chmeria-7B

Analyze the following multiple `<target_language>` translations of the `<source_language>` segment surrounded in triple backticks and generate a single refined `<target_language>` translation. Only output the refined translation, do not explain.

The `<source_language>` segment:
```<source_text>```

The multiple `<target_language>` translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```


&nbsp;

### Use with transformers
First, please install transformers, recommends v4.55.4
```SHELL
pip install transformers==4.55.4
```

The following code snippet shows how to use the transformers library to load and apply the model.

we use tencent/Hunyuan-MT-7B for example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/Hunyuan-MT-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
```

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

```json
{
  "top_k": 20,
  "top_p": 0.6,
  "repetition_penalty": 1.05,
  "temperature": 0.7
}
```