Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- LICENSE.txt +17 -0
- NOTICE.txt +344 -0
- README.md +672 -0
- config.json +172 -0
- configuration_pointsv15_chat.py +35 -0
- generation_config.json +4 -0
- images/logo.png +3 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +839 -0
- modeling_pointsv15_chat.py +230 -0
- preprocessor_config.json +29 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/logo.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tencent is pleased to support the open source community by making POINTS-Reader available.
|
2 |
+
|
3 |
+
Copyright (C) 2025 Tencent. All rights reserved.
|
4 |
+
|
5 |
+
POINTS-Reader is licensed under the POINTS-Reader License, except for the third-party components listed in the NOTICE file, which are licensed under their respective terms. Those third-party components remain solely subject to their original licenses, with no additional limitations imposed by us. Users must comply with all terms and conditions of original licenses of those third-party components and must ensure that the usage of the third party components adheres to all relevant laws and regulations. You may refer to the NOTICE file for further information.
|
6 |
+
|
7 |
+
For the avoidance of doubt, POINTS-Reader refers only to the code, parameters, and weights as made publicly available by Tencent under the POINTS-Reader License.
|
8 |
+
|
9 |
+
Terms of the POINTS-Reader License:
|
10 |
+
--------------------------------------------------------------------
|
11 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
12 |
+
|
13 |
+
- You agree to use the POINTS-Reader only for research or evaluation purposes, and shall not use it for any commercial or production purposes under any circumstances.
|
14 |
+
|
15 |
+
- The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
16 |
+
|
17 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
NOTICE.txt
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tencent is pleased to support the open source community by making POINTS-Reader available.
|
2 |
+
Copyright (C) 2025 Tencent. All rights reserved.
|
3 |
+
|
4 |
+
The software and/or models listed below in this distribution may have been modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) Tencent.
|
5 |
+
|
6 |
+
POINTS-Reader is built on and with the aid of the following open source software and models. Credits are given to these software and models for their contributions.
|
7 |
+
|
8 |
+
If you believe there are errors in the attribution below, you may submit your concerns to us for review and correction.
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
POINTS-Reader was built on Qwen2.5-3B-Instruct and fine-tuned by Tencent.
|
13 |
+
|
14 |
+
Qwen2.5-3B-Instruct is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
|
15 |
+
|
16 |
+
Terms of the Qwen RESEARCH LICENSE AGREEMENT:
|
17 |
+
--------------------------------------------------------------------
|
18 |
+
Qwen RESEARCH LICENSE AGREEMENT
|
19 |
+
|
20 |
+
Release Date: September 19, 2024
|
21 |
+
|
22 |
+
By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
23 |
+
|
24 |
+
1. Definitions
|
25 |
+
a. This Qwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
26 |
+
b. "We" (or "Us") shall mean Alibaba Cloud.
|
27 |
+
c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
28 |
+
d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
|
29 |
+
e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
|
30 |
+
f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
|
31 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
32 |
+
h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
|
33 |
+
i. "Non-Commercial" shall mean for research or evaluation purposes only.
|
34 |
+
|
35 |
+
2. Grant of Rights
|
36 |
+
a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
|
37 |
+
b. If you are commercially using the Materials, you shall request a license from us.
|
38 |
+
|
39 |
+
3. Redistribution
|
40 |
+
You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
|
41 |
+
a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
|
42 |
+
b. You shall cause any modified files to carry prominent notices stating that you changed the files;
|
43 |
+
c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
|
44 |
+
d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
45 |
+
|
46 |
+
4. Rules of use
|
47 |
+
a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
|
48 |
+
b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
|
49 |
+
|
50 |
+
5. Intellectual Property
|
51 |
+
a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
|
52 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
53 |
+
c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
54 |
+
6. Disclaimer of Warranty and Limitation of Liability
|
55 |
+
a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
|
56 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
57 |
+
c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
|
58 |
+
d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
|
59 |
+
|
60 |
+
7. Survival and Termination.
|
61 |
+
a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
62 |
+
b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
|
63 |
+
|
64 |
+
8. Governing Law and Jurisdiction.
|
65 |
+
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
66 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
67 |
+
9. Other Terms and Conditions.
|
68 |
+
a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a separate license from us, if you use the Materials in ways not expressly agreed to in this Agreement.
|
69 |
+
b. We shall not be bound by any additional or different terms or conditions communicated by you unless expressly agreed.
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
POINTS-Reader was built with the aid of the following open source software.
|
74 |
+
|
75 |
+
Open Source Software Licensed under the Apahce-2.0:
|
76 |
+
--------------------------------------------------------------------
|
77 |
+
1. transformers
|
78 |
+
Copyright 2018- The Hugging Face team. All rights reserved.
|
79 |
+
|
80 |
+
This software was modified by Tencent
|
81 |
+
|
82 |
+
Terms of the Apache-2.0:
|
83 |
+
--------------------------------------------------------------------
|
84 |
+
For license: Apache-2.0
|
85 |
+
-----------------------
|
86 |
+
Apache License
|
87 |
+
Version 2.0, January 2004
|
88 |
+
http://www.apache.org/licenses/
|
89 |
+
|
90 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
91 |
+
|
92 |
+
1. Definitions.
|
93 |
+
|
94 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
95 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
96 |
+
|
97 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
98 |
+
the copyright owner that is granting the License.
|
99 |
+
|
100 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
101 |
+
other entities that control, are controlled by, or are under common
|
102 |
+
control with that entity. For the purposes of this definition,
|
103 |
+
"control" means (i) the power, direct or indirect, to cause the
|
104 |
+
direction or management of such entity, whether by contract or
|
105 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
106 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
107 |
+
|
108 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
109 |
+
exercising permissions granted by this License.
|
110 |
+
|
111 |
+
"Source" form shall mean the preferred form for making modifications,
|
112 |
+
including but not limited to software source code, documentation
|
113 |
+
source, and configuration files.
|
114 |
+
|
115 |
+
"Object" form shall mean any form resulting from mechanical
|
116 |
+
transformation or translation of a Source form, including but
|
117 |
+
not limited to compiled object code, generated documentation,
|
118 |
+
and conversions to other media types.
|
119 |
+
|
120 |
+
"Work" shall mean the work of authorship, whether in Source or
|
121 |
+
Object form, made available under the License, as indicated by a
|
122 |
+
copyright notice that is included in or attached to the work
|
123 |
+
(an example is provided in the Appendix below).
|
124 |
+
|
125 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
126 |
+
form, that is based on (or derived from) the Work and for which the
|
127 |
+
editorial revisions, annotations, elaborations, or other modifications
|
128 |
+
represent, as a whole, an original work of authorship. For the purposes
|
129 |
+
of this License, Derivative Works shall not include works that remain
|
130 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
131 |
+
the Work and Derivative Works thereof.
|
132 |
+
|
133 |
+
"Contribution" shall mean any work of authorship, including
|
134 |
+
the original version of the Work and any modifications or additions
|
135 |
+
to that Work or Derivative Works thereof, that is intentionally
|
136 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
137 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
138 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
139 |
+
means any form of electronic, verbal, or written communication sent
|
140 |
+
to the Licensor or its representatives, including but not limited to
|
141 |
+
communication on electronic mailing lists, source code control systems,
|
142 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
143 |
+
Licensor for the purpose of discussing and improving the Work, but
|
144 |
+
excluding communication that is conspicuously marked or otherwise
|
145 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
146 |
+
|
147 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
148 |
+
on behalf of whom a Contribution has been received by Licensor and
|
149 |
+
subsequently incorporated within the Work.
|
150 |
+
|
151 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
152 |
+
this License, each Contributor hereby grants to You a perpetual,
|
153 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
154 |
+
copyright license to reproduce, prepare Derivative Works of,
|
155 |
+
publicly display, publicly perform, sublicense, and distribute the
|
156 |
+
Work and such Derivative Works in Source or Object form.
|
157 |
+
|
158 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
159 |
+
this License, each Contributor hereby grants to You a perpetual,
|
160 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
161 |
+
(except as stated in this section) patent license to make, have made,
|
162 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
163 |
+
where such license applies only to those patent claims licensable
|
164 |
+
by such Contributor that are necessarily infringed by their
|
165 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
166 |
+
with the Work to which such Contribution(s) was submitted. If You
|
167 |
+
institute patent litigation against any entity (including a
|
168 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
169 |
+
or a Contribution incorporated within the Work constitutes direct
|
170 |
+
or contributory patent infringement, then any patent licenses
|
171 |
+
granted to You under this License for that Work shall terminate
|
172 |
+
as of the date such litigation is filed.
|
173 |
+
|
174 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
175 |
+
Work or Derivative Works thereof in any medium, with or without
|
176 |
+
modifications, and in Source or Object form, provided that You
|
177 |
+
meet the following conditions:
|
178 |
+
|
179 |
+
(a) You must give any other recipients of the Work or
|
180 |
+
Derivative Works a copy of this License; and
|
181 |
+
|
182 |
+
(b) You must cause any modified files to carry prominent notices
|
183 |
+
stating that You changed the files; and
|
184 |
+
|
185 |
+
(c) You must retain, in the Source form of any Derivative Works
|
186 |
+
that You distribute, all copyright, patent, trademark, and
|
187 |
+
attribution notices from the Source form of the Work,
|
188 |
+
excluding those notices that do not pertain to any part of
|
189 |
+
the Derivative Works; and
|
190 |
+
|
191 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
192 |
+
distribution, then any Derivative Works that You distribute must
|
193 |
+
include a readable copy of the attribution notices contained
|
194 |
+
within such NOTICE file, excluding those notices that do not
|
195 |
+
pertain to any part of the Derivative Works, in at least one
|
196 |
+
of the following places: within a NOTICE text file distributed
|
197 |
+
as part of the Derivative Works; within the Source form or
|
198 |
+
documentation, if provided along with the Derivative Works; or,
|
199 |
+
within a display generated by the Derivative Works, if and
|
200 |
+
wherever such third-party notices normally appear. The contents
|
201 |
+
of the NOTICE file are for informational purposes only and
|
202 |
+
do not modify the License. You may add Your own attribution
|
203 |
+
notices within Derivative Works that You distribute, alongside
|
204 |
+
or as an addendum to the NOTICE text from the Work, provided
|
205 |
+
that such additional attribution notices cannot be construed
|
206 |
+
as modifying the License.
|
207 |
+
|
208 |
+
You may add Your own copyright statement to Your modifications and
|
209 |
+
may provide additional or different license terms and conditions
|
210 |
+
for use, reproduction, or distribution of Your modifications, or
|
211 |
+
for any such Derivative Works as a whole, provided Your use,
|
212 |
+
reproduction, and distribution of the Work otherwise complies with
|
213 |
+
the conditions stated in this License.
|
214 |
+
|
215 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
216 |
+
any Contribution intentionally submitted for inclusion in the Work
|
217 |
+
by You to the Licensor shall be under the terms and conditions of
|
218 |
+
this License, without any additional terms or conditions.
|
219 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
220 |
+
the terms of any separate license agreement you may have executed
|
221 |
+
with Licensor regarding such Contributions.
|
222 |
+
|
223 |
+
6. Trademarks. This License does not grant permission to use the trade
|
224 |
+
names, trademarks, service marks, or product names of the Licensor,
|
225 |
+
except as required for reasonable and customary use in describing the
|
226 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
227 |
+
|
228 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
229 |
+
agreed to in writing, Licensor provides the Work (and each
|
230 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
231 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
232 |
+
implied, including, without limitation, any warranties or conditions
|
233 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
234 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
235 |
+
appropriateness of using or redistributing the Work and assume any
|
236 |
+
risks associated with Your exercise of permissions under this License.
|
237 |
+
|
238 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
239 |
+
whether in tort (including negligence), contract, or otherwise,
|
240 |
+
unless required by applicable law (such as deliberate and grossly
|
241 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
242 |
+
liable to You for damages, including any direct, indirect, special,
|
243 |
+
incidental, or consequential damages of any character arising as a
|
244 |
+
result of this License or out of the use or inability to use the
|
245 |
+
Work (including but not limited to damages for loss of goodwill,
|
246 |
+
work stoppage, computer failure or malfunction, or any and all
|
247 |
+
other commercial damages or losses), even if such Contributor
|
248 |
+
has been advised of the possibility of such damages.
|
249 |
+
|
250 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
251 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
252 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
253 |
+
or other liability obligations and/or rights consistent with this
|
254 |
+
License. However, in accepting such obligations, You may act only
|
255 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
256 |
+
of any other Contributor, and only if You agree to indemnify,
|
257 |
+
defend, and hold each Contributor harmless for any liability
|
258 |
+
incurred by, or claims asserted against, such Contributor by reason
|
259 |
+
of your accepting any such warranty or additional liability.
|
260 |
+
|
261 |
+
END OF TERMS AND CONDITIONS
|
262 |
+
|
263 |
+
|
264 |
+
Open Source Software Licensed under the BSD-3-Clause:
|
265 |
+
--------------------------------------------------------------------
|
266 |
+
1. torch
|
267 |
+
From PyTorch:
|
268 |
+
|
269 |
+
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
270 |
+
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
271 |
+
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
272 |
+
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
273 |
+
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
274 |
+
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
275 |
+
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
|
276 |
+
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
|
277 |
+
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
|
278 |
+
|
279 |
+
From Caffe2:
|
280 |
+
|
281 |
+
Copyright (c) 2016-present, Facebook Inc. All rights reserved.
|
282 |
+
|
283 |
+
All contributions by Facebook:
|
284 |
+
Copyright (c) 2016 Facebook Inc.
|
285 |
+
|
286 |
+
All contributions by Google:
|
287 |
+
Copyright (c) 2015 Google Inc.
|
288 |
+
All rights reserved.
|
289 |
+
|
290 |
+
All contributions by Yangqing Jia:
|
291 |
+
Copyright (c) 2015 Yangqing Jia
|
292 |
+
All rights reserved.
|
293 |
+
|
294 |
+
All contributions by Kakao Brain:
|
295 |
+
Copyright 2019-2020 Kakao Brain
|
296 |
+
|
297 |
+
All contributions by Cruise LLC:
|
298 |
+
Copyright (c) 2022 Cruise LLC.
|
299 |
+
All rights reserved.
|
300 |
+
|
301 |
+
All contributions by Arm:
|
302 |
+
Copyright (c) 2021, 2023-2024 Arm Limited and/or its affiliates
|
303 |
+
|
304 |
+
All contributions from Caffe:
|
305 |
+
Copyright(c) 2013, 2014, 2015, the respective contributors
|
306 |
+
All rights reserved.
|
307 |
+
|
308 |
+
All other contributions:
|
309 |
+
Copyright(c) 2015, 2016 the respective contributors
|
310 |
+
All rights reserved.
|
311 |
+
|
312 |
+
Terms of the BSD-3-Clause:
|
313 |
+
--------------------------------------------------------------------
|
314 |
+
For license: BSD-3-Clause
|
315 |
+
-------------------------
|
316 |
+
BSD 3-Clause License
|
317 |
+
|
318 |
+
Redistribution and use in source and binary forms, with or without
|
319 |
+
modification, are permitted provided that the following conditions are met:
|
320 |
+
|
321 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
322 |
+
list of conditions and the following disclaimer.
|
323 |
+
|
324 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
325 |
+
this list of conditions and the following disclaimer in the documentation
|
326 |
+
and/or other materials provided with the distribution.
|
327 |
+
|
328 |
+
3. Neither the name of the copyright holder nor the names of its
|
329 |
+
contributors may be used to endorse or promote products derived from
|
330 |
+
this software without specific prior written permission.
|
331 |
+
|
332 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
333 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
334 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
335 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
336 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
337 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
338 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
339 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
340 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
341 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
342 |
+
===========================
|
343 |
+
End of the Attribution Notice of this project.
|
344 |
+
|
README.md
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="images/logo.png" width="700"/>
|
3 |
+
<p>
|
4 |
+
|
5 |
+
<h1 align="center">
|
6 |
+
POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
|
7 |
+
</h1>
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<a href="https://huggingface.co/tencent/POINTS-Reader">
|
11 |
+
<img src="https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace" alt="HuggingFace">
|
12 |
+
</a>
|
13 |
+
<a href="">
|
14 |
+
<img src="https://img.shields.io/badge/arXiv__-POINTS--Reader-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="arXiv">
|
15 |
+
</a>
|
16 |
+
<a href="">
|
17 |
+
<img src="https://komarev.com/ghpvc/?username=tencent&repo=POINTS-Reader&color=brightgreen&label=Views" alt="view">
|
18 |
+
</a>
|
19 |
+
</p>
|
20 |
+
|
21 |
+
We are delighted to announce that the WePOINTS family has welcomed a new member: POINTS-Reader, a vision-language model for end-to-end document conversion.
|
22 |
+
|
23 |
+
## News
|
24 |
+
|
25 |
+
- 2025.08.26: We released the weights of the most recent version of POINT-Reader🔥🔥🔥.
|
26 |
+
- 2025.08.21: POINTS-Reader is accepted by **EMNLP 2025** for presentation at the **Main Conference**🎉🎉🎉.
|
27 |
+
|
28 |
+
## Introduction
|
29 |
+
|
30 |
+
1. **Simplicity**: POINTS-Reader is a very streamlined model that fully follows the structure of POINTS1.5, except that we have replaced Qwen2.5-7B-Instruct with Qwen2.5-3B-Instruct. Moreover, the input and output of POINTS-Reader are extremely straightforward. The input consists of a fixed prompt and a document image, and the output contains only a string (text extracted from the document image). The model's output is the final result delivered to the user without any post-processing.
|
31 |
+
|
32 |
+
2. **Performance**: Currently, POINTS-Reader supports extraction from both Chinese and English documents, achieving impressive results, with scores of 0.133 for English and 0.212 for Chinese on OmniDocBench.
|
33 |
+
|
34 |
+
3. **High Throughput**: With current mainstream inference frameworks, such as SGLang and vLLM, optimization is predominantly focused on LLMs. Thus, a large ViT would significantly impact the model’s throughput, which is why we selected a ViT with a moderate number of parameters (600M NaViT used in POINTS1.5). Combined with our support for SGLang, we currently achieve a very satisfactory throughput. We will also provide support for vLLM in the future.
|
35 |
+
|
36 |
+
4. **Open-source Technical Approach**: In the POINTS-Reader paper, we propose a two-stage data augmentation strategy. The first stage leverages automated data to endow the model with basic document extraction capabilities. In the subsequent stage, continuous self-evolution improves the quality of data generated by the model. The self-evolution approach in the second stage is highly extensible and can be applied to virtually any model.
|
37 |
+
|
38 |
+
## Results
|
39 |
+
|
40 |
+
We take the following results from [OmniDocBench](https://github.com/opendatalab/OmniDocBench/tree/main) and POINTS-Reader for comparison:
|
41 |
+
|
42 |
+
<table style="width: 92%; margin: auto; border-collapse: collapse;">
|
43 |
+
<thead>
|
44 |
+
<tr>
|
45 |
+
<th rowspan="2">Method Type</th>
|
46 |
+
<th rowspan="2">Methods</th>
|
47 |
+
<th colspan="2">Overall<sup>Edit</sup>↓</th>
|
48 |
+
<th colspan="2">Text<sup>Edit</sup>↓</th>
|
49 |
+
<th colspan="2">Formula<sup>Edit</sup>↓</th>
|
50 |
+
<th colspan="2">Formula<sup>CDM</sup>↑</th>
|
51 |
+
<th colspan="2">Table<sup>TEDS</sup>↑</th>
|
52 |
+
<th colspan="2">Table<sup>Edit</sup>↓</th>
|
53 |
+
<th colspan="2">Read Order<sup>Edit</sup>↓</th>
|
54 |
+
</tr>
|
55 |
+
<tr>
|
56 |
+
<th>EN</th>
|
57 |
+
<th>ZH</th>
|
58 |
+
<th>EN</th>
|
59 |
+
<th>ZH</th>
|
60 |
+
<th>EN</th>
|
61 |
+
<th>ZH</th>
|
62 |
+
<th>EN</th>
|
63 |
+
<th>ZH</th>
|
64 |
+
<th>EN</th>
|
65 |
+
<th>ZH</th>
|
66 |
+
<th>EN</th>
|
67 |
+
<th>ZH</th>
|
68 |
+
<th>EN</th>
|
69 |
+
<th>ZH</th>
|
70 |
+
</tr>
|
71 |
+
</thead>
|
72 |
+
<tbody>
|
73 |
+
<tr>
|
74 |
+
<td rowspan="9">Pipeline Tools</td>
|
75 |
+
<td>MinerU-pipeline-2.1.1</td>
|
76 |
+
<td>0.162</td>
|
77 |
+
<td>0.244</td>
|
78 |
+
<td>0.072</td>
|
79 |
+
<td>0.111</td>
|
80 |
+
<td>0.313</td>
|
81 |
+
<td>0.581</td>
|
82 |
+
<td>79.2</td>
|
83 |
+
<td>48.8</td>
|
84 |
+
<td>77.4</td>
|
85 |
+
<td>79.5</td>
|
86 |
+
<td>0.166</td>
|
87 |
+
<td>0.15</td>
|
88 |
+
<td>0.097</td>
|
89 |
+
<td>0.136</td>
|
90 |
+
</tr>
|
91 |
+
<tr>
|
92 |
+
<td>Marker-1.2.3</td>
|
93 |
+
<td>0.336</td>
|
94 |
+
<td>0.556</td>
|
95 |
+
<td>0.08</td>
|
96 |
+
<td>0.315</td>
|
97 |
+
<td>0.53</td>
|
98 |
+
<td>0.883</td>
|
99 |
+
<td>17.6</td>
|
100 |
+
<td>11.7</td>
|
101 |
+
<td>67.6</td>
|
102 |
+
<td>49.2</td>
|
103 |
+
<td>0.619</td>
|
104 |
+
<td>0.685</td>
|
105 |
+
<td>0.114</td>
|
106 |
+
<td>0.34</td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td>Marker-1.7.1</td>
|
110 |
+
<td>0.296</td>
|
111 |
+
<td>0.497</td>
|
112 |
+
<td>0.085</td>
|
113 |
+
<td>0.293</td>
|
114 |
+
<td>0.374</td>
|
115 |
+
<td>0.688</td>
|
116 |
+
<td>79.0</td>
|
117 |
+
<td>36.7</td>
|
118 |
+
<td>67.6</td>
|
119 |
+
<td>54.0</td>
|
120 |
+
<td>0.609</td>
|
121 |
+
<td>0.678</td>
|
122 |
+
<td>0.116</td>
|
123 |
+
<td>0.329</td>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td>PaddleOCR PP-StructureV3</td>
|
127 |
+
<td>0.145</td>
|
128 |
+
<td>0.206</td>
|
129 |
+
<td>0.058</td>
|
130 |
+
<td>0.088</td>
|
131 |
+
<td>0.295</td>
|
132 |
+
<td>0.535</td>
|
133 |
+
<td>81.8</td>
|
134 |
+
<td>52.1</td>
|
135 |
+
<td>77.2</td>
|
136 |
+
<td>83.9</td>
|
137 |
+
<td>0.159</td>
|
138 |
+
<td>0.109</td>
|
139 |
+
<td>0.069</td>
|
140 |
+
<td>0.091</td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td>Mathpix</td>
|
144 |
+
<td>0.191</td>
|
145 |
+
<td>0.364</td>
|
146 |
+
<td>0.105</td>
|
147 |
+
<td>0.381</td>
|
148 |
+
<td>0.306</td>
|
149 |
+
<td>0.454</td>
|
150 |
+
<td>82.7</td>
|
151 |
+
<td>64.6</td>
|
152 |
+
<td>77.0</td>
|
153 |
+
<td>67.1</td>
|
154 |
+
<td>0.243</td>
|
155 |
+
<td>0.32</td>
|
156 |
+
<td>0.108</td>
|
157 |
+
<td>0.304</td>
|
158 |
+
</tr>
|
159 |
+
<tr>
|
160 |
+
<td>Docling-2.14.0</td>
|
161 |
+
<td>0.589</td>
|
162 |
+
<td>0.909</td>
|
163 |
+
<td>0.416</td>
|
164 |
+
<td>0.987</td>
|
165 |
+
<td>0.999</td>
|
166 |
+
<td>1</td>
|
167 |
+
<td>-</td>
|
168 |
+
<td>-</td>
|
169 |
+
<td>61.3</td>
|
170 |
+
<td>25.0</td>
|
171 |
+
<td>0.627</td>
|
172 |
+
<td>0.810</td>
|
173 |
+
<td>0.313</td>
|
174 |
+
<td>0.837</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>Pix2Text-1.1.2.3</td>
|
178 |
+
<td>0.32</td>
|
179 |
+
<td>0.528</td>
|
180 |
+
<td>0.138</td>
|
181 |
+
<td>0.356</td>
|
182 |
+
<td>0.276</td>
|
183 |
+
<td>0.611</td>
|
184 |
+
<td>78.4</td>
|
185 |
+
<td>39.6</td>
|
186 |
+
<td>73.6</td>
|
187 |
+
<td>66.2</td>
|
188 |
+
<td>0.584</td>
|
189 |
+
<td>0.645</td>
|
190 |
+
<td>0.281</td>
|
191 |
+
<td>0.499</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>Unstructured-0.17.2</td>
|
195 |
+
<td>0.586</td>
|
196 |
+
<td>0.716</td>
|
197 |
+
<td>0.198</td>
|
198 |
+
<td>0.481</td>
|
199 |
+
<td>0.999</td>
|
200 |
+
<td>1</td>
|
201 |
+
<td>-</td>
|
202 |
+
<td>-</td>
|
203 |
+
<td>0</td>
|
204 |
+
<td>0.064</td>
|
205 |
+
<td>1</td>
|
206 |
+
<td>0.998</td>
|
207 |
+
<td>0.145</td>
|
208 |
+
<td>0.387</td>
|
209 |
+
</tr>
|
210 |
+
<tr>
|
211 |
+
<td>OpenParse-0.7.0</td>
|
212 |
+
<td>0.646</td>
|
213 |
+
<td>0.814</td>
|
214 |
+
<td>0.681</td>
|
215 |
+
<td>0.974</td>
|
216 |
+
<td>0.996</td>
|
217 |
+
<td>1</td>
|
218 |
+
<td>0.106</td>
|
219 |
+
<td>0</td>
|
220 |
+
<td>64.8</td>
|
221 |
+
<td>27.5</td>
|
222 |
+
<td>0.284</td>
|
223 |
+
<td>0.639</td>
|
224 |
+
<td>0.595</td>
|
225 |
+
<td>0.641</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td rowspan="10">Expert VLMs</td>
|
229 |
+
<td>POINTS-Reader-3B</td>
|
230 |
+
<td>0.133</td>
|
231 |
+
<td>0.212</td>
|
232 |
+
<td>0.062</td>
|
233 |
+
<td>0.139</td>
|
234 |
+
<td>0.304</td>
|
235 |
+
<td>0.465</td>
|
236 |
+
<td>-</td>
|
237 |
+
<td>-</td>
|
238 |
+
<td>83.7</td>
|
239 |
+
<td>85.0</td>
|
240 |
+
<td>0.128</td>
|
241 |
+
<td>0.136</td>
|
242 |
+
<td>0.036</td>
|
243 |
+
<td>0.106</td>
|
244 |
+
</tr>
|
245 |
+
<tr>
|
246 |
+
<td>MinerU2.0-2505-0.9B</td>
|
247 |
+
<td>0.133</td>
|
248 |
+
<td>0.238</td>
|
249 |
+
<td>0.045</td>
|
250 |
+
<td>0.115</td>
|
251 |
+
<td>0.273</td>
|
252 |
+
<td>0.506</td>
|
253 |
+
<td>79.0</td>
|
254 |
+
<td>50.8</td>
|
255 |
+
<td>82.1</td>
|
256 |
+
<td>83.4</td>
|
257 |
+
<td>0.15</td>
|
258 |
+
<td>0.209</td>
|
259 |
+
<td>0.066</td>
|
260 |
+
<td>0.122</td>
|
261 |
+
</tr>
|
262 |
+
<tr>
|
263 |
+
<td>MonkeyOCR-pro-1.2B</td>
|
264 |
+
<td>0.146</td>
|
265 |
+
<td>0.221</td>
|
266 |
+
<td>0.068</td>
|
267 |
+
<td>0.118</td>
|
268 |
+
<td>0.272</td>
|
269 |
+
<td>0.452</td>
|
270 |
+
<td>76.7</td>
|
271 |
+
<td>63.3</td>
|
272 |
+
<td>81.3</td>
|
273 |
+
<td>85.5</td>
|
274 |
+
<td>0.149</td>
|
275 |
+
<td>0.134</td>
|
276 |
+
<td>0.093</td>
|
277 |
+
<td>0.179</td>
|
278 |
+
</tr>
|
279 |
+
<tr>
|
280 |
+
<td>Dolphin</td>
|
281 |
+
<td>0.356</td>
|
282 |
+
<td>0.440</td>
|
283 |
+
<td>0.352</td>
|
284 |
+
<td>0.440</td>
|
285 |
+
<td>0.465</td>
|
286 |
+
<td>0.604</td>
|
287 |
+
<td>61.6</td>
|
288 |
+
<td>40.4</td>
|
289 |
+
<td>70.2</td>
|
290 |
+
<td>56.8</td>
|
291 |
+
<td>0.258</td>
|
292 |
+
<td>0.367</td>
|
293 |
+
<td>0.35</td>
|
294 |
+
<td>0.351</td>
|
295 |
+
</tr>
|
296 |
+
<tr>
|
297 |
+
<td>Nanonets-OCR-s</td>
|
298 |
+
<td>0.283</td>
|
299 |
+
<td>0.295</td>
|
300 |
+
<td>0.134</td>
|
301 |
+
<td>0.231</td>
|
302 |
+
<td>0.518</td>
|
303 |
+
<td>0.546</td>
|
304 |
+
<td>63.2</td>
|
305 |
+
<td>52.0</td>
|
306 |
+
<td>76.8</td>
|
307 |
+
<td>79.4</td>
|
308 |
+
<td>0.343</td>
|
309 |
+
<td>0.201</td>
|
310 |
+
<td>0.135</td>
|
311 |
+
<td>0.2</td>
|
312 |
+
</tr>
|
313 |
+
<tr>
|
314 |
+
<td>OCRFlux-3B</td>
|
315 |
+
<td>0.238</td>
|
316 |
+
<td>0.349</td>
|
317 |
+
<td>0.112</td>
|
318 |
+
<td>0.256</td>
|
319 |
+
<td>0.447</td>
|
320 |
+
<td>0.716</td>
|
321 |
+
<td>60.2</td>
|
322 |
+
<td>31.9</td>
|
323 |
+
<td>69.0</td>
|
324 |
+
<td>80.0</td>
|
325 |
+
<td>0.269</td>
|
326 |
+
<td>0.162</td>
|
327 |
+
<td>0.126</td>
|
328 |
+
<td>0.263</td>
|
329 |
+
</tr>
|
330 |
+
<tr>
|
331 |
+
<td>GOT-OCR</td>
|
332 |
+
<td>0.287</td>
|
333 |
+
<td>0.411</td>
|
334 |
+
<td>0.189</td>
|
335 |
+
<td>0.315</td>
|
336 |
+
<td>0.360</td>
|
337 |
+
<td>0.528</td>
|
338 |
+
<td>74.3</td>
|
339 |
+
<td>45.3</td>
|
340 |
+
<td>53.2</td>
|
341 |
+
<td>47.2</td>
|
342 |
+
<td>0.459</td>
|
343 |
+
<td>0.52</td>
|
344 |
+
<td>0.141</td>
|
345 |
+
<td>0.28</td>
|
346 |
+
</tr>
|
347 |
+
<tr>
|
348 |
+
<td>Nougat</td>
|
349 |
+
<td>0.452</td>
|
350 |
+
<td>0.973</td>
|
351 |
+
<td>0.365</td>
|
352 |
+
<td>0.998</td>
|
353 |
+
<td>0.488</td>
|
354 |
+
<td>0.941</td>
|
355 |
+
<td>15.1</td>
|
356 |
+
<td>16.8</td>
|
357 |
+
<td>39.9</td>
|
358 |
+
<td>0.0</td>
|
359 |
+
<td>0.572</td>
|
360 |
+
<td>1.000</td>
|
361 |
+
<td>0.382</td>
|
362 |
+
<td>0.954</td>
|
363 |
+
</tr>
|
364 |
+
<tr>
|
365 |
+
<td>Mistral OCR</td>
|
366 |
+
<td>0.268</td>
|
367 |
+
<td>0.439</td>
|
368 |
+
<td>0.072</td>
|
369 |
+
<td>0.325</td>
|
370 |
+
<td>0.318</td>
|
371 |
+
<td>0.495</td>
|
372 |
+
<td>64.6</td>
|
373 |
+
<td>45.9</td>
|
374 |
+
<td>75.8</td>
|
375 |
+
<td>63.6</td>
|
376 |
+
<td>0.6</td>
|
377 |
+
<td>0.65</td>
|
378 |
+
<td>0.083</td>
|
379 |
+
<td>0.284</td>
|
380 |
+
</tr>
|
381 |
+
<tr>
|
382 |
+
<td>OLMOCR-sglang</td>
|
383 |
+
<td>0.326</td>
|
384 |
+
<td>0.469</td>
|
385 |
+
<td>0.097</td>
|
386 |
+
<td>0.293</td>
|
387 |
+
<td>0.455</td>
|
388 |
+
<td>0.655</td>
|
389 |
+
<td>74.3</td>
|
390 |
+
<td>43.2</td>
|
391 |
+
<td>68.1</td>
|
392 |
+
<td>61.3</td>
|
393 |
+
<td>0.608</td>
|
394 |
+
<td>0.652</td>
|
395 |
+
<td>0.145</td>
|
396 |
+
<td>0.277</td>
|
397 |
+
</tr>
|
398 |
+
<tr>
|
399 |
+
<td>SmolDocling-256M_transformer</td>
|
400 |
+
<td>0.493</td>
|
401 |
+
<td>0.816</td>
|
402 |
+
<td>0.262</td>
|
403 |
+
<td>0.838</td>
|
404 |
+
<td>0.753</td>
|
405 |
+
<td>0.997</td>
|
406 |
+
<td>32.1</td>
|
407 |
+
<td>0.551</td>
|
408 |
+
<td>44.9</td>
|
409 |
+
<td>16.5</td>
|
410 |
+
<td>0.729</td>
|
411 |
+
<td>0.907</td>
|
412 |
+
<td>0.227</td>
|
413 |
+
<td>0.522</td>
|
414 |
+
</tr>
|
415 |
+
<tr>
|
416 |
+
<td rowspan="9">General VLMs</td>
|
417 |
+
<tr>
|
418 |
+
<td>Gemini2.0-flash</td>
|
419 |
+
<td>0.191</td>
|
420 |
+
<td>0.264</td>
|
421 |
+
<td>0.091</td>
|
422 |
+
<td>0.139</td>
|
423 |
+
<td>0.389</td>
|
424 |
+
<td>0.584</td>
|
425 |
+
<td>77.6</td>
|
426 |
+
<td>43.6</td>
|
427 |
+
<td>79.7</td>
|
428 |
+
<td>78.9</td>
|
429 |
+
<td>0.193</td>
|
430 |
+
<td>0.206</td>
|
431 |
+
<td>0.092</td>
|
432 |
+
<td>0.128</td>
|
433 |
+
</tr>
|
434 |
+
<tr>
|
435 |
+
<td>Gemini2.5-Pro</td>
|
436 |
+
<td>0.148</td>
|
437 |
+
<td>0.212</td>
|
438 |
+
<td>0.055</td>
|
439 |
+
<td>0.168</td>
|
440 |
+
<td>0.356</td>
|
441 |
+
<td>0.439</td>
|
442 |
+
<td>80.0</td>
|
443 |
+
<td>69.4</td>
|
444 |
+
<td>85.8</td>
|
445 |
+
<td>86.4</td>
|
446 |
+
<td>0.13</td>
|
447 |
+
<td>0.119</td>
|
448 |
+
<td>0.049</td>
|
449 |
+
<td>0.121</td>
|
450 |
+
</tr>
|
451 |
+
<tr>
|
452 |
+
<td>GPT4o</td>
|
453 |
+
<td>0.233</td>
|
454 |
+
<td>0.399</td>
|
455 |
+
<td>0.144</td>
|
456 |
+
<td>0.409</td>
|
457 |
+
<td>0.425</td>
|
458 |
+
<td>0.606</td>
|
459 |
+
<td>72.8</td>
|
460 |
+
<td>42.8</td>
|
461 |
+
<td>72.0</td>
|
462 |
+
<td>62.9</td>
|
463 |
+
<td>0.234</td>
|
464 |
+
<td>0.329</td>
|
465 |
+
<td>0.128</td>
|
466 |
+
<td>0.251</td>
|
467 |
+
</tr>
|
468 |
+
<tr>
|
469 |
+
<td>Qwen2-VL-72B</td>
|
470 |
+
<td>0.252</td>
|
471 |
+
<td>0.327</td>
|
472 |
+
<td>0.096</td>
|
473 |
+
<td>0.218</td>
|
474 |
+
<td>0.404</td>
|
475 |
+
<td>0.487</td>
|
476 |
+
<td>82.2</td>
|
477 |
+
<td>61.2</td>
|
478 |
+
<td>76.8</td>
|
479 |
+
<td>76.4</td>
|
480 |
+
<td>0.387</td>
|
481 |
+
<td>0.408</td>
|
482 |
+
<td>0.119</td>
|
483 |
+
<td>0.193</td>
|
484 |
+
</tr>
|
485 |
+
<tr>
|
486 |
+
<td>Qwen2.5-VL-7B</td>
|
487 |
+
<td>0.316</td>
|
488 |
+
<td>0.399</td>
|
489 |
+
<td>0.151</td>
|
490 |
+
<td>0.243</td>
|
491 |
+
<td>0.376</td>
|
492 |
+
<td>0.5</td>
|
493 |
+
<td>75.3</td>
|
494 |
+
<td>57.3</td>
|
495 |
+
<td>71.1</td>
|
496 |
+
<td>71.3</td>
|
497 |
+
<td>0.598</td>
|
498 |
+
<td>0.627</td>
|
499 |
+
<td>0.138</td>
|
500 |
+
<td>0.226</td>
|
501 |
+
</tr>
|
502 |
+
|
503 |
+
<tr>
|
504 |
+
<td>Qwen2.5-VL-72B</td>
|
505 |
+
<td>0.214</td>
|
506 |
+
<td>0.261</td>
|
507 |
+
<td>0.092</td>
|
508 |
+
<td>0.18</td>
|
509 |
+
<td>0.315</td>
|
510 |
+
<td>0.434</td>
|
511 |
+
<td>81.4</td>
|
512 |
+
<td>64.1</td>
|
513 |
+
<td>81.4</td>
|
514 |
+
<td>83.0</td>
|
515 |
+
<td>0.341</td>
|
516 |
+
<td>0.262</td>
|
517 |
+
<td>0.106</td>
|
518 |
+
<td>0.168</td>
|
519 |
+
</tr>
|
520 |
+
<tr>
|
521 |
+
<td>InternVL2-76B</td>
|
522 |
+
<td>0.44</td>
|
523 |
+
<td>0.443</td>
|
524 |
+
<td>0.353</td>
|
525 |
+
<td>0.290</td>
|
526 |
+
<td>0.543</td>
|
527 |
+
<td>0.701</td>
|
528 |
+
<td>67.4</td>
|
529 |
+
<td>44.1</td>
|
530 |
+
<td>63.0</td>
|
531 |
+
<td>60.2</td>
|
532 |
+
<td>0.547</td>
|
533 |
+
<td>0.555</td>
|
534 |
+
<td>0.317</td>
|
535 |
+
<td>0.228</td>
|
536 |
+
</tr>
|
537 |
+
<tr>
|
538 |
+
<td>InternVL3-78B</td>
|
539 |
+
<td>0.218</td>
|
540 |
+
<td>0.296</td>
|
541 |
+
<td>0.117</td>
|
542 |
+
<td>0.21</td>
|
543 |
+
<td>0.38</td>
|
544 |
+
<td>0.533</td>
|
545 |
+
<td>79.2</td>
|
546 |
+
<td>58.8</td>
|
547 |
+
<td>69.0</td>
|
548 |
+
<td>73.9</td>
|
549 |
+
<td>0.279</td>
|
550 |
+
<td>0.282</td>
|
551 |
+
<td>0.095</td>
|
552 |
+
<td>0.161</td>
|
553 |
+
</tr>
|
554 |
+
</tbody>
|
555 |
+
</table>
|
556 |
+
|
557 |
+
## Getting Started
|
558 |
+
|
559 |
+
This following code snippet has been tested with following environment:
|
560 |
+
|
561 |
+
```
|
562 |
+
python==3.10.12
|
563 |
+
torch==2.5.1
|
564 |
+
transformers==4.46.1
|
565 |
+
cuda==12.1
|
566 |
+
```
|
567 |
+
|
568 |
+
If you encounter environment issues, please feel free to open an issue.
|
569 |
+
|
570 |
+
### Run with Transformers
|
571 |
+
|
572 |
+
Before you run the following code, make sure you install the `WePOINTS` package by running:
|
573 |
+
|
574 |
+
```
|
575 |
+
git clone https://github.com/WePOINTS/WePOINTS.git
|
576 |
+
cd WePOINTS
|
577 |
+
pip install -e.
|
578 |
+
```
|
579 |
+
|
580 |
+
```python
|
581 |
+
from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
|
582 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
583 |
+
import torch
|
584 |
+
|
585 |
+
|
586 |
+
# We recommend using the following prompt to better performance,
|
587 |
+
# since it is used throughout the training process.
|
588 |
+
prompt = (
|
589 |
+
'Please extract all the text from the image with the following requirements:\n'
|
590 |
+
'1. Return tables in HTML format.\n'
|
591 |
+
'2. Return all other text in Markdown format.'
|
592 |
+
)
|
593 |
+
image_path = '/path/to/your/local/image'
|
594 |
+
model_path = 'tencent/POINTS-Reader'
|
595 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,
|
596 |
+
trust_remote_code=True,
|
597 |
+
torch_dtype=torch.float16,
|
598 |
+
device_map='cuda')
|
599 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
600 |
+
image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)
|
601 |
+
content = [
|
602 |
+
dict(type='image', image=image_path),
|
603 |
+
dict(type='text', text=prompt)
|
604 |
+
]
|
605 |
+
messages = [
|
606 |
+
{
|
607 |
+
'role': 'user',
|
608 |
+
'content': content
|
609 |
+
}
|
610 |
+
]
|
611 |
+
generation_config = {
|
612 |
+
'max_new_tokens': 2048,
|
613 |
+
'repetition_penalty': 1.05,
|
614 |
+
'temperature': 0.7,
|
615 |
+
'top_p': 0.8,
|
616 |
+
'top_k': 20,
|
617 |
+
'do_sample': True
|
618 |
+
}
|
619 |
+
response = model.chat(
|
620 |
+
messages,
|
621 |
+
tokenizer,
|
622 |
+
image_processor,
|
623 |
+
generation_config
|
624 |
+
)
|
625 |
+
print(response)
|
626 |
+
```
|
627 |
+
|
628 |
+
If you encounter issues like repeation, please try to increase the resolution of the image to allievate the problem.
|
629 |
+
|
630 |
+
### Deploy with SGLang
|
631 |
+
|
632 |
+
We will create a Pull Request to SGLang, please stay tuned.
|
633 |
+
|
634 |
+
## Known Issues
|
635 |
+
|
636 |
+
- **Complex Document Parsing**: POINTS-Reader can struggle with complex layouts (e.g., newspapers), often producing repeated or missing content.
|
637 |
+
- **Handwritten Document Parsing**: It also has difficulty handling handwritten inputs (e.g., receipts, notes), which can lead to recognition errors or omissions.
|
638 |
+
- **Multi-language Document Parsing**: POINTS-Reader currently supports only English and Chinese, limiting its effectiveness on other languages.
|
639 |
+
|
640 |
+
## Citation
|
641 |
+
|
642 |
+
If you use this model in your work, please cite the following paper:
|
643 |
+
|
644 |
+
```
|
645 |
+
@article{points-reader,
|
646 |
+
title={POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion},
|
647 |
+
author={Liu, Yuan and Zhongyin Zhao and Tian, Le and Haicheng Wang and Xubing Ye and Yangxiu You and Zilin Yu and Chuhan Wu and Zhou, Xiao and Yu, Yang and Zhou, Jie},
|
648 |
+
journal={},
|
649 |
+
year={2025}
|
650 |
+
}
|
651 |
+
|
652 |
+
@article{liu2024points1,
|
653 |
+
title={POINTS1. 5: Building a Vision-Language Model towards Real World Applications},
|
654 |
+
author={Liu, Yuan and Tian, Le and Zhou, Xiao and Gao, Xinyu and Yu, Kavio and Yu, Yang and Zhou, Jie},
|
655 |
+
journal={arXiv preprint arXiv:2412.08443},
|
656 |
+
year={2024}
|
657 |
+
}
|
658 |
+
|
659 |
+
@article{liu2024points,
|
660 |
+
title={POINTS: Improving Your Vision-language Model with Affordable Strategies},
|
661 |
+
author={Liu, Yuan and Zhao, Zhongyin and Zhuang, Ziyuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
|
662 |
+
journal={arXiv preprint arXiv:2409.04828},
|
663 |
+
year={2024}
|
664 |
+
}
|
665 |
+
|
666 |
+
@article{liu2024rethinking,
|
667 |
+
title={Rethinking Overlooked Aspects in Vision-Language Models},
|
668 |
+
author={Liu, Yuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
|
669 |
+
journal={arXiv preprint arXiv:2405.11850},
|
670 |
+
year={2024}
|
671 |
+
}
|
672 |
+
```
|
config.json
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"POINTSV15ChatModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_pointsv15_chat.POINTSV15ChatConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_pointsv15_chat.POINTSV15ChatModel"
|
9 |
+
},
|
10 |
+
"llm_config": {
|
11 |
+
"_attn_implementation_autoset": true,
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"attention_dropout": 0.0,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"begin_suppress_tokens": null,
|
18 |
+
"bos_token_id": null,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"early_stopping": false,
|
25 |
+
"encoder_no_repeat_ngram_size": 0,
|
26 |
+
"eos_token_id": null,
|
27 |
+
"exponential_decay_length_penalty": null,
|
28 |
+
"finetuning_task": null,
|
29 |
+
"forced_bos_token_id": null,
|
30 |
+
"forced_eos_token_id": null,
|
31 |
+
"hidden_act": "silu",
|
32 |
+
"hidden_size": 2048,
|
33 |
+
"id2label": {
|
34 |
+
"0": "LABEL_0",
|
35 |
+
"1": "LABEL_1"
|
36 |
+
},
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 11008,
|
39 |
+
"is_decoder": false,
|
40 |
+
"is_encoder_decoder": false,
|
41 |
+
"label2id": {
|
42 |
+
"LABEL_0": 0,
|
43 |
+
"LABEL_1": 1
|
44 |
+
},
|
45 |
+
"length_penalty": 1.0,
|
46 |
+
"max_length": 20,
|
47 |
+
"max_position_embeddings": 32768,
|
48 |
+
"max_window_layers": 28,
|
49 |
+
"min_length": 0,
|
50 |
+
"model_type": "qwen2",
|
51 |
+
"no_repeat_ngram_size": 0,
|
52 |
+
"num_attention_heads": 16,
|
53 |
+
"num_beam_groups": 1,
|
54 |
+
"num_beams": 1,
|
55 |
+
"num_hidden_layers": 36,
|
56 |
+
"num_key_value_heads": 2,
|
57 |
+
"num_return_sequences": 1,
|
58 |
+
"output_attentions": false,
|
59 |
+
"output_hidden_states": false,
|
60 |
+
"output_scores": false,
|
61 |
+
"pad_token_id": null,
|
62 |
+
"prefix": null,
|
63 |
+
"problem_type": null,
|
64 |
+
"pruned_heads": {},
|
65 |
+
"remove_invalid_values": false,
|
66 |
+
"repetition_penalty": 1.0,
|
67 |
+
"return_dict": true,
|
68 |
+
"return_dict_in_generate": false,
|
69 |
+
"rms_norm_eps": 1e-06,
|
70 |
+
"rope_scaling": null,
|
71 |
+
"rope_theta": 1000000.0,
|
72 |
+
"sep_token_id": null,
|
73 |
+
"sliding_window": null,
|
74 |
+
"suppress_tokens": null,
|
75 |
+
"task_specific_params": null,
|
76 |
+
"temperature": 1.0,
|
77 |
+
"tf_legacy_loss": false,
|
78 |
+
"tie_encoder_decoder": false,
|
79 |
+
"tie_word_embeddings": false,
|
80 |
+
"tokenizer_class": null,
|
81 |
+
"top_k": 50,
|
82 |
+
"top_p": 1.0,
|
83 |
+
"torch_dtype": null,
|
84 |
+
"torchscript": false,
|
85 |
+
"transformers_version": "4.46.1",
|
86 |
+
"typical_p": 1.0,
|
87 |
+
"use_bfloat16": false,
|
88 |
+
"use_cache": true,
|
89 |
+
"use_sliding_window": false,
|
90 |
+
"vocab_size": 151936
|
91 |
+
},
|
92 |
+
"torch_dtype": "bfloat16",
|
93 |
+
"transformers_version": null,
|
94 |
+
"vision_config": {
|
95 |
+
"_attn_implementation_autoset": false,
|
96 |
+
"_name_or_path": "",
|
97 |
+
"add_cross_attention": false,
|
98 |
+
"architectures": null,
|
99 |
+
"bad_words_ids": null,
|
100 |
+
"begin_suppress_tokens": null,
|
101 |
+
"bos_token_id": null,
|
102 |
+
"chunk_size_feed_forward": 0,
|
103 |
+
"cross_attention_hidden_size": null,
|
104 |
+
"decoder_start_token_id": null,
|
105 |
+
"depth": 32,
|
106 |
+
"diversity_penalty": 0.0,
|
107 |
+
"do_sample": false,
|
108 |
+
"early_stopping": false,
|
109 |
+
"embed_dim": 1280,
|
110 |
+
"encoder_no_repeat_ngram_size": 0,
|
111 |
+
"eos_token_id": null,
|
112 |
+
"exponential_decay_length_penalty": null,
|
113 |
+
"finetuning_task": null,
|
114 |
+
"forced_bos_token_id": null,
|
115 |
+
"forced_eos_token_id": null,
|
116 |
+
"hidden_act": "quick_gelu",
|
117 |
+
"hidden_size": 3584,
|
118 |
+
"id2label": {
|
119 |
+
"0": "LABEL_0",
|
120 |
+
"1": "LABEL_1"
|
121 |
+
},
|
122 |
+
"in_channels": 3,
|
123 |
+
"in_chans": 3,
|
124 |
+
"is_decoder": false,
|
125 |
+
"is_encoder_decoder": false,
|
126 |
+
"label2id": {
|
127 |
+
"LABEL_0": 0,
|
128 |
+
"LABEL_1": 1
|
129 |
+
},
|
130 |
+
"length_penalty": 1.0,
|
131 |
+
"max_length": 20,
|
132 |
+
"min_length": 0,
|
133 |
+
"mlp_ratio": 4,
|
134 |
+
"model_type": "qwen2_vl",
|
135 |
+
"no_repeat_ngram_size": 0,
|
136 |
+
"num_beam_groups": 1,
|
137 |
+
"num_beams": 1,
|
138 |
+
"num_heads": 16,
|
139 |
+
"num_return_sequences": 1,
|
140 |
+
"output_attentions": false,
|
141 |
+
"output_hidden_states": false,
|
142 |
+
"output_scores": false,
|
143 |
+
"pad_token_id": null,
|
144 |
+
"patch_size": 14,
|
145 |
+
"prefix": null,
|
146 |
+
"problem_type": null,
|
147 |
+
"pruned_heads": {},
|
148 |
+
"remove_invalid_values": false,
|
149 |
+
"repetition_penalty": 1.0,
|
150 |
+
"return_dict": true,
|
151 |
+
"return_dict_in_generate": false,
|
152 |
+
"sep_token_id": null,
|
153 |
+
"spatial_merge_size": 2,
|
154 |
+
"spatial_patch_size": 14,
|
155 |
+
"suppress_tokens": null,
|
156 |
+
"task_specific_params": null,
|
157 |
+
"temperature": 1.0,
|
158 |
+
"temporal_patch_size": 2,
|
159 |
+
"tf_legacy_loss": false,
|
160 |
+
"tie_encoder_decoder": false,
|
161 |
+
"tie_word_embeddings": true,
|
162 |
+
"tokenizer_class": null,
|
163 |
+
"top_k": 50,
|
164 |
+
"top_p": 1.0,
|
165 |
+
"torch_dtype": "bfloat16",
|
166 |
+
"torchscript": false,
|
167 |
+
"transformers_version": "4.46.1",
|
168 |
+
"typical_p": 1.0,
|
169 |
+
"use_bfloat16": false
|
170 |
+
},
|
171 |
+
"image_token_id": 151655
|
172 |
+
}
|
configuration_pointsv15_chat.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
from transformers import PretrainedConfig, Qwen2Config
|
5 |
+
|
6 |
+
try:
|
7 |
+
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
|
8 |
+
except ImportError:
|
9 |
+
print('Please upgrade transformers to version 4.46.3 or higher')
|
10 |
+
|
11 |
+
|
12 |
+
class POINTSV15ChatConfig(PretrainedConfig):
|
13 |
+
model_type = "pointsv1.5_chat"
|
14 |
+
is_composition = True
|
15 |
+
"""Configuration class for `POINTSV1.5`."""
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
**kwargs) -> None:
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
vision_config = kwargs.pop("vision_config", None)
|
21 |
+
llm_config = kwargs.pop("llm_config", None)
|
22 |
+
if isinstance(vision_config, dict):
|
23 |
+
self.vision_config = Qwen2VLVisionConfig(**vision_config)
|
24 |
+
else:
|
25 |
+
self.vision_config = vision_config
|
26 |
+
if isinstance(llm_config, dict):
|
27 |
+
self.llm_config = Qwen2Config(**llm_config)
|
28 |
+
else:
|
29 |
+
self.llm_config = llm_config
|
30 |
+
|
31 |
+
def to_dict(self) -> Dict[str, Any]:
|
32 |
+
output = copy.deepcopy(self.__dict__)
|
33 |
+
output["vision_config"] = self.vision_config.to_dict()
|
34 |
+
output["llm_config"] = self.llm_config.to_dict()
|
35 |
+
return output
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.46.1"
|
4 |
+
}
|
images/logo.png
ADDED
![]() |
Git LFS Details
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5190e74560cf08e67e49d2ad21efa5c47e89a7b909039fe7c0e16e4ff2ce9a9
|
3 |
+
size 4957561680
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59b8e93d19f41beee32f672a06dea97dfa120733142dff2638d4e7041c365df
|
3 |
+
size 3261679960
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8219145216
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llm.lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"llm.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"llm.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"llm.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"llm.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"llm.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"llm.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"llm.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"llm.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"llm.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"llm.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"llm.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"llm.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"llm.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"llm.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"llm.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"llm.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"llm.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"llm.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"llm.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"llm.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"llm.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"llm.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"llm.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"llm.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"llm.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"llm.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"llm.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"llm.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"llm.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"llm.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"llm.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"llm.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"llm.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"llm.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"llm.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"llm.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"llm.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"llm.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"llm.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"llm.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"llm.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"llm.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"llm.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"llm.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"llm.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"llm.model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"llm.model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"llm.model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"llm.model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"llm.model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"llm.model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"llm.model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"llm.model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"llm.model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"llm.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"llm.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"llm.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"llm.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"llm.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"llm.model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"llm.model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"llm.model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"llm.model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"llm.model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"llm.model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"llm.model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"llm.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"llm.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"llm.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"llm.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"llm.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"llm.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"llm.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"llm.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"llm.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"llm.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"llm.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"llm.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"llm.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"llm.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"llm.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"llm.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"llm.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"llm.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"llm.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"llm.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"llm.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"llm.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"llm.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"llm.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"llm.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"llm.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"llm.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"llm.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"llm.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"llm.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"llm.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"llm.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"llm.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"llm.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"llm.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"llm.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"llm.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"llm.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"llm.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"llm.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"llm.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"llm.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"llm.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"llm.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"llm.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"llm.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"llm.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"llm.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"llm.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"llm.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"llm.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"llm.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"llm.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"llm.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"llm.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"llm.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"llm.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"llm.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"llm.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"llm.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"llm.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"llm.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"llm.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"llm.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"llm.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"llm.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"llm.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"llm.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"llm.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"llm.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"llm.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"llm.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"llm.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"llm.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"llm.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"llm.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"llm.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"llm.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"llm.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"llm.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"llm.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"llm.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"llm.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"llm.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"llm.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"llm.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"llm.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"llm.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"llm.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"llm.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"llm.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"llm.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"llm.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"llm.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"llm.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"llm.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"llm.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"llm.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"llm.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"llm.model.norm.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"vision_encoder.blocks.0.attn.proj.bias": "model-00002-of-00002.safetensors",
|
442 |
+
"vision_encoder.blocks.0.attn.proj.weight": "model-00002-of-00002.safetensors",
|
443 |
+
"vision_encoder.blocks.0.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
444 |
+
"vision_encoder.blocks.0.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
445 |
+
"vision_encoder.blocks.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
446 |
+
"vision_encoder.blocks.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
447 |
+
"vision_encoder.blocks.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
448 |
+
"vision_encoder.blocks.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
449 |
+
"vision_encoder.blocks.0.norm1.bias": "model-00002-of-00002.safetensors",
|
450 |
+
"vision_encoder.blocks.0.norm1.weight": "model-00002-of-00002.safetensors",
|
451 |
+
"vision_encoder.blocks.0.norm2.bias": "model-00002-of-00002.safetensors",
|
452 |
+
"vision_encoder.blocks.0.norm2.weight": "model-00002-of-00002.safetensors",
|
453 |
+
"vision_encoder.blocks.1.attn.proj.bias": "model-00002-of-00002.safetensors",
|
454 |
+
"vision_encoder.blocks.1.attn.proj.weight": "model-00002-of-00002.safetensors",
|
455 |
+
"vision_encoder.blocks.1.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
456 |
+
"vision_encoder.blocks.1.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
457 |
+
"vision_encoder.blocks.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
458 |
+
"vision_encoder.blocks.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
459 |
+
"vision_encoder.blocks.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
460 |
+
"vision_encoder.blocks.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
461 |
+
"vision_encoder.blocks.1.norm1.bias": "model-00002-of-00002.safetensors",
|
462 |
+
"vision_encoder.blocks.1.norm1.weight": "model-00002-of-00002.safetensors",
|
463 |
+
"vision_encoder.blocks.1.norm2.bias": "model-00002-of-00002.safetensors",
|
464 |
+
"vision_encoder.blocks.1.norm2.weight": "model-00002-of-00002.safetensors",
|
465 |
+
"vision_encoder.blocks.10.attn.proj.bias": "model-00002-of-00002.safetensors",
|
466 |
+
"vision_encoder.blocks.10.attn.proj.weight": "model-00002-of-00002.safetensors",
|
467 |
+
"vision_encoder.blocks.10.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
468 |
+
"vision_encoder.blocks.10.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
469 |
+
"vision_encoder.blocks.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
470 |
+
"vision_encoder.blocks.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
471 |
+
"vision_encoder.blocks.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
472 |
+
"vision_encoder.blocks.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
473 |
+
"vision_encoder.blocks.10.norm1.bias": "model-00002-of-00002.safetensors",
|
474 |
+
"vision_encoder.blocks.10.norm1.weight": "model-00002-of-00002.safetensors",
|
475 |
+
"vision_encoder.blocks.10.norm2.bias": "model-00002-of-00002.safetensors",
|
476 |
+
"vision_encoder.blocks.10.norm2.weight": "model-00002-of-00002.safetensors",
|
477 |
+
"vision_encoder.blocks.11.attn.proj.bias": "model-00002-of-00002.safetensors",
|
478 |
+
"vision_encoder.blocks.11.attn.proj.weight": "model-00002-of-00002.safetensors",
|
479 |
+
"vision_encoder.blocks.11.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
480 |
+
"vision_encoder.blocks.11.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
481 |
+
"vision_encoder.blocks.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
482 |
+
"vision_encoder.blocks.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
483 |
+
"vision_encoder.blocks.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
484 |
+
"vision_encoder.blocks.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
485 |
+
"vision_encoder.blocks.11.norm1.bias": "model-00002-of-00002.safetensors",
|
486 |
+
"vision_encoder.blocks.11.norm1.weight": "model-00002-of-00002.safetensors",
|
487 |
+
"vision_encoder.blocks.11.norm2.bias": "model-00002-of-00002.safetensors",
|
488 |
+
"vision_encoder.blocks.11.norm2.weight": "model-00002-of-00002.safetensors",
|
489 |
+
"vision_encoder.blocks.12.attn.proj.bias": "model-00002-of-00002.safetensors",
|
490 |
+
"vision_encoder.blocks.12.attn.proj.weight": "model-00002-of-00002.safetensors",
|
491 |
+
"vision_encoder.blocks.12.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
492 |
+
"vision_encoder.blocks.12.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
493 |
+
"vision_encoder.blocks.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
494 |
+
"vision_encoder.blocks.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
495 |
+
"vision_encoder.blocks.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
496 |
+
"vision_encoder.blocks.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
497 |
+
"vision_encoder.blocks.12.norm1.bias": "model-00002-of-00002.safetensors",
|
498 |
+
"vision_encoder.blocks.12.norm1.weight": "model-00002-of-00002.safetensors",
|
499 |
+
"vision_encoder.blocks.12.norm2.bias": "model-00002-of-00002.safetensors",
|
500 |
+
"vision_encoder.blocks.12.norm2.weight": "model-00002-of-00002.safetensors",
|
501 |
+
"vision_encoder.blocks.13.attn.proj.bias": "model-00002-of-00002.safetensors",
|
502 |
+
"vision_encoder.blocks.13.attn.proj.weight": "model-00002-of-00002.safetensors",
|
503 |
+
"vision_encoder.blocks.13.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
504 |
+
"vision_encoder.blocks.13.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
505 |
+
"vision_encoder.blocks.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
506 |
+
"vision_encoder.blocks.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
507 |
+
"vision_encoder.blocks.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
508 |
+
"vision_encoder.blocks.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
509 |
+
"vision_encoder.blocks.13.norm1.bias": "model-00002-of-00002.safetensors",
|
510 |
+
"vision_encoder.blocks.13.norm1.weight": "model-00002-of-00002.safetensors",
|
511 |
+
"vision_encoder.blocks.13.norm2.bias": "model-00002-of-00002.safetensors",
|
512 |
+
"vision_encoder.blocks.13.norm2.weight": "model-00002-of-00002.safetensors",
|
513 |
+
"vision_encoder.blocks.14.attn.proj.bias": "model-00002-of-00002.safetensors",
|
514 |
+
"vision_encoder.blocks.14.attn.proj.weight": "model-00002-of-00002.safetensors",
|
515 |
+
"vision_encoder.blocks.14.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
516 |
+
"vision_encoder.blocks.14.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
517 |
+
"vision_encoder.blocks.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
518 |
+
"vision_encoder.blocks.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
519 |
+
"vision_encoder.blocks.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
520 |
+
"vision_encoder.blocks.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
521 |
+
"vision_encoder.blocks.14.norm1.bias": "model-00002-of-00002.safetensors",
|
522 |
+
"vision_encoder.blocks.14.norm1.weight": "model-00002-of-00002.safetensors",
|
523 |
+
"vision_encoder.blocks.14.norm2.bias": "model-00002-of-00002.safetensors",
|
524 |
+
"vision_encoder.blocks.14.norm2.weight": "model-00002-of-00002.safetensors",
|
525 |
+
"vision_encoder.blocks.15.attn.proj.bias": "model-00002-of-00002.safetensors",
|
526 |
+
"vision_encoder.blocks.15.attn.proj.weight": "model-00002-of-00002.safetensors",
|
527 |
+
"vision_encoder.blocks.15.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
528 |
+
"vision_encoder.blocks.15.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
529 |
+
"vision_encoder.blocks.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
530 |
+
"vision_encoder.blocks.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
531 |
+
"vision_encoder.blocks.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
532 |
+
"vision_encoder.blocks.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
533 |
+
"vision_encoder.blocks.15.norm1.bias": "model-00002-of-00002.safetensors",
|
534 |
+
"vision_encoder.blocks.15.norm1.weight": "model-00002-of-00002.safetensors",
|
535 |
+
"vision_encoder.blocks.15.norm2.bias": "model-00002-of-00002.safetensors",
|
536 |
+
"vision_encoder.blocks.15.norm2.weight": "model-00002-of-00002.safetensors",
|
537 |
+
"vision_encoder.blocks.16.attn.proj.bias": "model-00002-of-00002.safetensors",
|
538 |
+
"vision_encoder.blocks.16.attn.proj.weight": "model-00002-of-00002.safetensors",
|
539 |
+
"vision_encoder.blocks.16.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
540 |
+
"vision_encoder.blocks.16.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
541 |
+
"vision_encoder.blocks.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
542 |
+
"vision_encoder.blocks.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
543 |
+
"vision_encoder.blocks.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
544 |
+
"vision_encoder.blocks.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
545 |
+
"vision_encoder.blocks.16.norm1.bias": "model-00002-of-00002.safetensors",
|
546 |
+
"vision_encoder.blocks.16.norm1.weight": "model-00002-of-00002.safetensors",
|
547 |
+
"vision_encoder.blocks.16.norm2.bias": "model-00002-of-00002.safetensors",
|
548 |
+
"vision_encoder.blocks.16.norm2.weight": "model-00002-of-00002.safetensors",
|
549 |
+
"vision_encoder.blocks.17.attn.proj.bias": "model-00002-of-00002.safetensors",
|
550 |
+
"vision_encoder.blocks.17.attn.proj.weight": "model-00002-of-00002.safetensors",
|
551 |
+
"vision_encoder.blocks.17.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
552 |
+
"vision_encoder.blocks.17.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
553 |
+
"vision_encoder.blocks.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
554 |
+
"vision_encoder.blocks.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
555 |
+
"vision_encoder.blocks.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
556 |
+
"vision_encoder.blocks.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
557 |
+
"vision_encoder.blocks.17.norm1.bias": "model-00002-of-00002.safetensors",
|
558 |
+
"vision_encoder.blocks.17.norm1.weight": "model-00002-of-00002.safetensors",
|
559 |
+
"vision_encoder.blocks.17.norm2.bias": "model-00002-of-00002.safetensors",
|
560 |
+
"vision_encoder.blocks.17.norm2.weight": "model-00002-of-00002.safetensors",
|
561 |
+
"vision_encoder.blocks.18.attn.proj.bias": "model-00002-of-00002.safetensors",
|
562 |
+
"vision_encoder.blocks.18.attn.proj.weight": "model-00002-of-00002.safetensors",
|
563 |
+
"vision_encoder.blocks.18.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
564 |
+
"vision_encoder.blocks.18.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
565 |
+
"vision_encoder.blocks.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
566 |
+
"vision_encoder.blocks.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
567 |
+
"vision_encoder.blocks.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
568 |
+
"vision_encoder.blocks.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
569 |
+
"vision_encoder.blocks.18.norm1.bias": "model-00002-of-00002.safetensors",
|
570 |
+
"vision_encoder.blocks.18.norm1.weight": "model-00002-of-00002.safetensors",
|
571 |
+
"vision_encoder.blocks.18.norm2.bias": "model-00002-of-00002.safetensors",
|
572 |
+
"vision_encoder.blocks.18.norm2.weight": "model-00002-of-00002.safetensors",
|
573 |
+
"vision_encoder.blocks.19.attn.proj.bias": "model-00002-of-00002.safetensors",
|
574 |
+
"vision_encoder.blocks.19.attn.proj.weight": "model-00002-of-00002.safetensors",
|
575 |
+
"vision_encoder.blocks.19.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
576 |
+
"vision_encoder.blocks.19.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
577 |
+
"vision_encoder.blocks.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
578 |
+
"vision_encoder.blocks.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
579 |
+
"vision_encoder.blocks.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
580 |
+
"vision_encoder.blocks.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
581 |
+
"vision_encoder.blocks.19.norm1.bias": "model-00002-of-00002.safetensors",
|
582 |
+
"vision_encoder.blocks.19.norm1.weight": "model-00002-of-00002.safetensors",
|
583 |
+
"vision_encoder.blocks.19.norm2.bias": "model-00002-of-00002.safetensors",
|
584 |
+
"vision_encoder.blocks.19.norm2.weight": "model-00002-of-00002.safetensors",
|
585 |
+
"vision_encoder.blocks.2.attn.proj.bias": "model-00002-of-00002.safetensors",
|
586 |
+
"vision_encoder.blocks.2.attn.proj.weight": "model-00002-of-00002.safetensors",
|
587 |
+
"vision_encoder.blocks.2.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
588 |
+
"vision_encoder.blocks.2.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
589 |
+
"vision_encoder.blocks.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
590 |
+
"vision_encoder.blocks.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
591 |
+
"vision_encoder.blocks.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
592 |
+
"vision_encoder.blocks.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
593 |
+
"vision_encoder.blocks.2.norm1.bias": "model-00002-of-00002.safetensors",
|
594 |
+
"vision_encoder.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
|
595 |
+
"vision_encoder.blocks.2.norm2.bias": "model-00002-of-00002.safetensors",
|
596 |
+
"vision_encoder.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
|
597 |
+
"vision_encoder.blocks.20.attn.proj.bias": "model-00002-of-00002.safetensors",
|
598 |
+
"vision_encoder.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
|
599 |
+
"vision_encoder.blocks.20.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
600 |
+
"vision_encoder.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
601 |
+
"vision_encoder.blocks.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
602 |
+
"vision_encoder.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
603 |
+
"vision_encoder.blocks.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
604 |
+
"vision_encoder.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
605 |
+
"vision_encoder.blocks.20.norm1.bias": "model-00002-of-00002.safetensors",
|
606 |
+
"vision_encoder.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
|
607 |
+
"vision_encoder.blocks.20.norm2.bias": "model-00002-of-00002.safetensors",
|
608 |
+
"vision_encoder.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
|
609 |
+
"vision_encoder.blocks.21.attn.proj.bias": "model-00002-of-00002.safetensors",
|
610 |
+
"vision_encoder.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
|
611 |
+
"vision_encoder.blocks.21.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
612 |
+
"vision_encoder.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
613 |
+
"vision_encoder.blocks.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
614 |
+
"vision_encoder.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
615 |
+
"vision_encoder.blocks.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
616 |
+
"vision_encoder.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
617 |
+
"vision_encoder.blocks.21.norm1.bias": "model-00002-of-00002.safetensors",
|
618 |
+
"vision_encoder.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
|
619 |
+
"vision_encoder.blocks.21.norm2.bias": "model-00002-of-00002.safetensors",
|
620 |
+
"vision_encoder.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
|
621 |
+
"vision_encoder.blocks.22.attn.proj.bias": "model-00002-of-00002.safetensors",
|
622 |
+
"vision_encoder.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
|
623 |
+
"vision_encoder.blocks.22.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
624 |
+
"vision_encoder.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
625 |
+
"vision_encoder.blocks.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
626 |
+
"vision_encoder.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
627 |
+
"vision_encoder.blocks.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
628 |
+
"vision_encoder.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
629 |
+
"vision_encoder.blocks.22.norm1.bias": "model-00002-of-00002.safetensors",
|
630 |
+
"vision_encoder.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
|
631 |
+
"vision_encoder.blocks.22.norm2.bias": "model-00002-of-00002.safetensors",
|
632 |
+
"vision_encoder.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
|
633 |
+
"vision_encoder.blocks.23.attn.proj.bias": "model-00002-of-00002.safetensors",
|
634 |
+
"vision_encoder.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
|
635 |
+
"vision_encoder.blocks.23.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
636 |
+
"vision_encoder.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
637 |
+
"vision_encoder.blocks.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
638 |
+
"vision_encoder.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
639 |
+
"vision_encoder.blocks.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
640 |
+
"vision_encoder.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
641 |
+
"vision_encoder.blocks.23.norm1.bias": "model-00002-of-00002.safetensors",
|
642 |
+
"vision_encoder.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
|
643 |
+
"vision_encoder.blocks.23.norm2.bias": "model-00002-of-00002.safetensors",
|
644 |
+
"vision_encoder.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
|
645 |
+
"vision_encoder.blocks.24.attn.proj.bias": "model-00002-of-00002.safetensors",
|
646 |
+
"vision_encoder.blocks.24.attn.proj.weight": "model-00002-of-00002.safetensors",
|
647 |
+
"vision_encoder.blocks.24.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
648 |
+
"vision_encoder.blocks.24.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
649 |
+
"vision_encoder.blocks.24.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
650 |
+
"vision_encoder.blocks.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
651 |
+
"vision_encoder.blocks.24.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
652 |
+
"vision_encoder.blocks.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
653 |
+
"vision_encoder.blocks.24.norm1.bias": "model-00002-of-00002.safetensors",
|
654 |
+
"vision_encoder.blocks.24.norm1.weight": "model-00002-of-00002.safetensors",
|
655 |
+
"vision_encoder.blocks.24.norm2.bias": "model-00002-of-00002.safetensors",
|
656 |
+
"vision_encoder.blocks.24.norm2.weight": "model-00002-of-00002.safetensors",
|
657 |
+
"vision_encoder.blocks.25.attn.proj.bias": "model-00002-of-00002.safetensors",
|
658 |
+
"vision_encoder.blocks.25.attn.proj.weight": "model-00002-of-00002.safetensors",
|
659 |
+
"vision_encoder.blocks.25.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
660 |
+
"vision_encoder.blocks.25.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
661 |
+
"vision_encoder.blocks.25.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
662 |
+
"vision_encoder.blocks.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
663 |
+
"vision_encoder.blocks.25.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
664 |
+
"vision_encoder.blocks.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
665 |
+
"vision_encoder.blocks.25.norm1.bias": "model-00002-of-00002.safetensors",
|
666 |
+
"vision_encoder.blocks.25.norm1.weight": "model-00002-of-00002.safetensors",
|
667 |
+
"vision_encoder.blocks.25.norm2.bias": "model-00002-of-00002.safetensors",
|
668 |
+
"vision_encoder.blocks.25.norm2.weight": "model-00002-of-00002.safetensors",
|
669 |
+
"vision_encoder.blocks.26.attn.proj.bias": "model-00002-of-00002.safetensors",
|
670 |
+
"vision_encoder.blocks.26.attn.proj.weight": "model-00002-of-00002.safetensors",
|
671 |
+
"vision_encoder.blocks.26.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
672 |
+
"vision_encoder.blocks.26.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
673 |
+
"vision_encoder.blocks.26.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
674 |
+
"vision_encoder.blocks.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
675 |
+
"vision_encoder.blocks.26.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
676 |
+
"vision_encoder.blocks.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
677 |
+
"vision_encoder.blocks.26.norm1.bias": "model-00002-of-00002.safetensors",
|
678 |
+
"vision_encoder.blocks.26.norm1.weight": "model-00002-of-00002.safetensors",
|
679 |
+
"vision_encoder.blocks.26.norm2.bias": "model-00002-of-00002.safetensors",
|
680 |
+
"vision_encoder.blocks.26.norm2.weight": "model-00002-of-00002.safetensors",
|
681 |
+
"vision_encoder.blocks.27.attn.proj.bias": "model-00002-of-00002.safetensors",
|
682 |
+
"vision_encoder.blocks.27.attn.proj.weight": "model-00002-of-00002.safetensors",
|
683 |
+
"vision_encoder.blocks.27.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
684 |
+
"vision_encoder.blocks.27.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
685 |
+
"vision_encoder.blocks.27.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
686 |
+
"vision_encoder.blocks.27.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
687 |
+
"vision_encoder.blocks.27.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
688 |
+
"vision_encoder.blocks.27.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
689 |
+
"vision_encoder.blocks.27.norm1.bias": "model-00002-of-00002.safetensors",
|
690 |
+
"vision_encoder.blocks.27.norm1.weight": "model-00002-of-00002.safetensors",
|
691 |
+
"vision_encoder.blocks.27.norm2.bias": "model-00002-of-00002.safetensors",
|
692 |
+
"vision_encoder.blocks.27.norm2.weight": "model-00002-of-00002.safetensors",
|
693 |
+
"vision_encoder.blocks.28.attn.proj.bias": "model-00002-of-00002.safetensors",
|
694 |
+
"vision_encoder.blocks.28.attn.proj.weight": "model-00002-of-00002.safetensors",
|
695 |
+
"vision_encoder.blocks.28.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
696 |
+
"vision_encoder.blocks.28.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
697 |
+
"vision_encoder.blocks.28.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
698 |
+
"vision_encoder.blocks.28.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
699 |
+
"vision_encoder.blocks.28.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
700 |
+
"vision_encoder.blocks.28.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
701 |
+
"vision_encoder.blocks.28.norm1.bias": "model-00002-of-00002.safetensors",
|
702 |
+
"vision_encoder.blocks.28.norm1.weight": "model-00002-of-00002.safetensors",
|
703 |
+
"vision_encoder.blocks.28.norm2.bias": "model-00002-of-00002.safetensors",
|
704 |
+
"vision_encoder.blocks.28.norm2.weight": "model-00002-of-00002.safetensors",
|
705 |
+
"vision_encoder.blocks.29.attn.proj.bias": "model-00002-of-00002.safetensors",
|
706 |
+
"vision_encoder.blocks.29.attn.proj.weight": "model-00002-of-00002.safetensors",
|
707 |
+
"vision_encoder.blocks.29.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
708 |
+
"vision_encoder.blocks.29.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
709 |
+
"vision_encoder.blocks.29.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
710 |
+
"vision_encoder.blocks.29.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
711 |
+
"vision_encoder.blocks.29.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
712 |
+
"vision_encoder.blocks.29.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
713 |
+
"vision_encoder.blocks.29.norm1.bias": "model-00002-of-00002.safetensors",
|
714 |
+
"vision_encoder.blocks.29.norm1.weight": "model-00002-of-00002.safetensors",
|
715 |
+
"vision_encoder.blocks.29.norm2.bias": "model-00002-of-00002.safetensors",
|
716 |
+
"vision_encoder.blocks.29.norm2.weight": "model-00002-of-00002.safetensors",
|
717 |
+
"vision_encoder.blocks.3.attn.proj.bias": "model-00002-of-00002.safetensors",
|
718 |
+
"vision_encoder.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
|
719 |
+
"vision_encoder.blocks.3.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
720 |
+
"vision_encoder.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
721 |
+
"vision_encoder.blocks.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
722 |
+
"vision_encoder.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
723 |
+
"vision_encoder.blocks.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
724 |
+
"vision_encoder.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
725 |
+
"vision_encoder.blocks.3.norm1.bias": "model-00002-of-00002.safetensors",
|
726 |
+
"vision_encoder.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
|
727 |
+
"vision_encoder.blocks.3.norm2.bias": "model-00002-of-00002.safetensors",
|
728 |
+
"vision_encoder.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
|
729 |
+
"vision_encoder.blocks.30.attn.proj.bias": "model-00002-of-00002.safetensors",
|
730 |
+
"vision_encoder.blocks.30.attn.proj.weight": "model-00002-of-00002.safetensors",
|
731 |
+
"vision_encoder.blocks.30.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
732 |
+
"vision_encoder.blocks.30.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
733 |
+
"vision_encoder.blocks.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
734 |
+
"vision_encoder.blocks.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
735 |
+
"vision_encoder.blocks.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
736 |
+
"vision_encoder.blocks.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
737 |
+
"vision_encoder.blocks.30.norm1.bias": "model-00002-of-00002.safetensors",
|
738 |
+
"vision_encoder.blocks.30.norm1.weight": "model-00002-of-00002.safetensors",
|
739 |
+
"vision_encoder.blocks.30.norm2.bias": "model-00002-of-00002.safetensors",
|
740 |
+
"vision_encoder.blocks.30.norm2.weight": "model-00002-of-00002.safetensors",
|
741 |
+
"vision_encoder.blocks.31.attn.proj.bias": "model-00002-of-00002.safetensors",
|
742 |
+
"vision_encoder.blocks.31.attn.proj.weight": "model-00002-of-00002.safetensors",
|
743 |
+
"vision_encoder.blocks.31.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
744 |
+
"vision_encoder.blocks.31.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
745 |
+
"vision_encoder.blocks.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
746 |
+
"vision_encoder.blocks.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
747 |
+
"vision_encoder.blocks.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
748 |
+
"vision_encoder.blocks.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
749 |
+
"vision_encoder.blocks.31.norm1.bias": "model-00002-of-00002.safetensors",
|
750 |
+
"vision_encoder.blocks.31.norm1.weight": "model-00002-of-00002.safetensors",
|
751 |
+
"vision_encoder.blocks.31.norm2.bias": "model-00002-of-00002.safetensors",
|
752 |
+
"vision_encoder.blocks.31.norm2.weight": "model-00002-of-00002.safetensors",
|
753 |
+
"vision_encoder.blocks.4.attn.proj.bias": "model-00002-of-00002.safetensors",
|
754 |
+
"vision_encoder.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
|
755 |
+
"vision_encoder.blocks.4.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
756 |
+
"vision_encoder.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
757 |
+
"vision_encoder.blocks.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
758 |
+
"vision_encoder.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
759 |
+
"vision_encoder.blocks.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
760 |
+
"vision_encoder.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
761 |
+
"vision_encoder.blocks.4.norm1.bias": "model-00002-of-00002.safetensors",
|
762 |
+
"vision_encoder.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
|
763 |
+
"vision_encoder.blocks.4.norm2.bias": "model-00002-of-00002.safetensors",
|
764 |
+
"vision_encoder.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
|
765 |
+
"vision_encoder.blocks.5.attn.proj.bias": "model-00002-of-00002.safetensors",
|
766 |
+
"vision_encoder.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
|
767 |
+
"vision_encoder.blocks.5.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
768 |
+
"vision_encoder.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
769 |
+
"vision_encoder.blocks.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
770 |
+
"vision_encoder.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
771 |
+
"vision_encoder.blocks.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
772 |
+
"vision_encoder.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
773 |
+
"vision_encoder.blocks.5.norm1.bias": "model-00002-of-00002.safetensors",
|
774 |
+
"vision_encoder.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
|
775 |
+
"vision_encoder.blocks.5.norm2.bias": "model-00002-of-00002.safetensors",
|
776 |
+
"vision_encoder.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
|
777 |
+
"vision_encoder.blocks.6.attn.proj.bias": "model-00002-of-00002.safetensors",
|
778 |
+
"vision_encoder.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
|
779 |
+
"vision_encoder.blocks.6.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
780 |
+
"vision_encoder.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
781 |
+
"vision_encoder.blocks.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
782 |
+
"vision_encoder.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
783 |
+
"vision_encoder.blocks.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
784 |
+
"vision_encoder.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
785 |
+
"vision_encoder.blocks.6.norm1.bias": "model-00002-of-00002.safetensors",
|
786 |
+
"vision_encoder.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
|
787 |
+
"vision_encoder.blocks.6.norm2.bias": "model-00002-of-00002.safetensors",
|
788 |
+
"vision_encoder.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
|
789 |
+
"vision_encoder.blocks.7.attn.proj.bias": "model-00002-of-00002.safetensors",
|
790 |
+
"vision_encoder.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
|
791 |
+
"vision_encoder.blocks.7.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
792 |
+
"vision_encoder.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
793 |
+
"vision_encoder.blocks.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
794 |
+
"vision_encoder.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
795 |
+
"vision_encoder.blocks.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
796 |
+
"vision_encoder.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
797 |
+
"vision_encoder.blocks.7.norm1.bias": "model-00002-of-00002.safetensors",
|
798 |
+
"vision_encoder.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
|
799 |
+
"vision_encoder.blocks.7.norm2.bias": "model-00002-of-00002.safetensors",
|
800 |
+
"vision_encoder.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
|
801 |
+
"vision_encoder.blocks.8.attn.proj.bias": "model-00002-of-00002.safetensors",
|
802 |
+
"vision_encoder.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
|
803 |
+
"vision_encoder.blocks.8.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
804 |
+
"vision_encoder.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
805 |
+
"vision_encoder.blocks.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
806 |
+
"vision_encoder.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
807 |
+
"vision_encoder.blocks.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
808 |
+
"vision_encoder.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
809 |
+
"vision_encoder.blocks.8.norm1.bias": "model-00002-of-00002.safetensors",
|
810 |
+
"vision_encoder.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
|
811 |
+
"vision_encoder.blocks.8.norm2.bias": "model-00002-of-00002.safetensors",
|
812 |
+
"vision_encoder.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
|
813 |
+
"vision_encoder.blocks.9.attn.proj.bias": "model-00002-of-00002.safetensors",
|
814 |
+
"vision_encoder.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
|
815 |
+
"vision_encoder.blocks.9.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
816 |
+
"vision_encoder.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
817 |
+
"vision_encoder.blocks.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
818 |
+
"vision_encoder.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
819 |
+
"vision_encoder.blocks.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
820 |
+
"vision_encoder.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
821 |
+
"vision_encoder.blocks.9.norm1.bias": "model-00002-of-00002.safetensors",
|
822 |
+
"vision_encoder.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
|
823 |
+
"vision_encoder.blocks.9.norm2.bias": "model-00002-of-00002.safetensors",
|
824 |
+
"vision_encoder.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
|
825 |
+
"vision_encoder.merger.ln_q.bias": "model-00002-of-00002.safetensors",
|
826 |
+
"vision_encoder.merger.ln_q.weight": "model-00002-of-00002.safetensors",
|
827 |
+
"vision_encoder.merger.mlp.0.bias": "model-00002-of-00002.safetensors",
|
828 |
+
"vision_encoder.merger.mlp.0.weight": "model-00002-of-00002.safetensors",
|
829 |
+
"vision_encoder.merger.mlp.2.bias": "model-00002-of-00002.safetensors",
|
830 |
+
"vision_encoder.merger.mlp.2.weight": "model-00002-of-00002.safetensors",
|
831 |
+
"vision_encoder.patch_embed.proj.weight": "model-00002-of-00002.safetensors",
|
832 |
+
"vision_projector.ln_q.bias": "model-00002-of-00002.safetensors",
|
833 |
+
"vision_projector.ln_q.weight": "model-00002-of-00002.safetensors",
|
834 |
+
"vision_projector.mlp.0.bias": "model-00002-of-00002.safetensors",
|
835 |
+
"vision_projector.mlp.0.weight": "model-00002-of-00002.safetensors",
|
836 |
+
"vision_projector.mlp.2.bias": "model-00002-of-00002.safetensors",
|
837 |
+
"vision_projector.mlp.2.weight": "model-00002-of-00002.safetensors"
|
838 |
+
}
|
839 |
+
}
|
modeling_pointsv15_chat.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import (
|
8 |
+
GenerationMixin,
|
9 |
+
PreTrainedModel,
|
10 |
+
PreTrainedTokenizer,
|
11 |
+
Qwen2ForCausalLM,
|
12 |
+
)
|
13 |
+
|
14 |
+
try:
|
15 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import ( # noqa
|
16 |
+
Qwen2VLImageProcessor,
|
17 |
+
)
|
18 |
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import PatchMerger
|
19 |
+
except ImportError:
|
20 |
+
print('Please upgrade transformers to version 4.46.3 or higher')
|
21 |
+
|
22 |
+
from .configuration_pointsv15_chat import POINTSV15ChatConfig
|
23 |
+
|
24 |
+
try:
|
25 |
+
from wepoints.models import Qwen2VisionTransformerForNavitPOINTS
|
26 |
+
except ImportError:
|
27 |
+
print('Please install WePOINTS, and refer to https://github.com/WePOINTS/WePOINTS')
|
28 |
+
|
29 |
+
|
30 |
+
class POINTSV15ChatModel(PreTrainedModel, GenerationMixin):
|
31 |
+
config_class = POINTSV15ChatConfig
|
32 |
+
_no_split_modules = ["CustomLlamaLayer",
|
33 |
+
"Qwen2VisionTransformerPretrainedModel"]
|
34 |
+
|
35 |
+
"""Chat model for POINTSv1.5.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
config (POINTSChatConfigV15): The model config.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, config: POINTSV15ChatConfig) -> None:
|
42 |
+
super().__init__(config)
|
43 |
+
config.llm_config._attn_implementation = "flash_attention_2"
|
44 |
+
config._attn_implementation_autoset = False
|
45 |
+
self.llm = Qwen2ForCausalLM(config.llm_config)
|
46 |
+
self.vision_encoder = Qwen2VisionTransformerForNavitPOINTS._from_config( # noqa
|
47 |
+
config.vision_config, attn_implementation="flash_attention_2"
|
48 |
+
)
|
49 |
+
self.vision_projector = PatchMerger(config.llm_config.hidden_size,
|
50 |
+
context_dim=1280).to(torch.bfloat16)
|
51 |
+
|
52 |
+
def process_images(self, images: torch.Tensor,
|
53 |
+
image_grid_thws: List[list]) -> torch.Tensor:
|
54 |
+
"""Obtain image features from the vision encoder.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
images (torch.Tensor): The input images.
|
58 |
+
image_grid_thws (List[list]): The grid thresholds for the images.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
torch.Tensor: The image features.
|
62 |
+
"""
|
63 |
+
image_features = self.vision_encoder(images, grid_thw=image_grid_thws)
|
64 |
+
image_features = self.vision_projector(image_features)
|
65 |
+
return image_features
|
66 |
+
|
67 |
+
def construct_prompt(self, messages: List[dict],
|
68 |
+
image_processor: Qwen2VLImageProcessor) -> Tuple[str, List[Image.Image], List[list]]: # noqa
|
69 |
+
"""Construct the prompt for the chat model.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
messages (List[dict]): The input messages.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
Tuple[str, List[Image.Image], List[list]]:
|
76 |
+
The prompt, images, and image grid shape.
|
77 |
+
"""
|
78 |
+
images = []
|
79 |
+
image_grid_thws = []
|
80 |
+
reconstructed_messages = []
|
81 |
+
for message in messages:
|
82 |
+
role = message['role']
|
83 |
+
content_from_role = ''
|
84 |
+
for item in message['content']:
|
85 |
+
if item['type'] == 'text':
|
86 |
+
content_from_role += item['text']
|
87 |
+
elif item['type'] == 'image':
|
88 |
+
image_path = item['image']
|
89 |
+
max_pixels = item['max_pixels'] if 'max_pixels' in item else None
|
90 |
+
image = Image.open(image_path).convert('RGB')
|
91 |
+
if max_pixels is not None:
|
92 |
+
# obtain image size
|
93 |
+
width, height = image.size
|
94 |
+
cur_image_pixels = width * height
|
95 |
+
if cur_image_pixels > max_pixels:
|
96 |
+
beta = math.sqrt((height * width) / max_pixels)
|
97 |
+
new_width = math.floor(width / beta)
|
98 |
+
new_height = math.floor(height / beta)
|
99 |
+
image = image.resize((new_width, new_height))
|
100 |
+
image_data = image_processor(images=image)
|
101 |
+
pixel_values = image_data['pixel_values']
|
102 |
+
image_grid_thw = image_data['image_grid_thw']
|
103 |
+
images.extend(pixel_values)
|
104 |
+
image_grid_thws.append(image_grid_thw)
|
105 |
+
seq_len = int(image_grid_thw[0][1] * image_grid_thw[0][2] / 4) # noqa
|
106 |
+
content_from_role += '<|vision_start|>' + '<|image_pad|>' * seq_len + '<|vision_end|>' + '\n' # noqa
|
107 |
+
reconstructed_messages.append({
|
108 |
+
'role': role,
|
109 |
+
'content': content_from_role
|
110 |
+
})
|
111 |
+
prompt = self.apply_chat_template(reconstructed_messages)
|
112 |
+
return prompt, images, image_grid_thws
|
113 |
+
|
114 |
+
def apply_chat_template(self, messages: List[dict]) -> str:
|
115 |
+
"""Apply the chat template to the input messages.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
messages (List[dict]): The input messages.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
str: The prompt.
|
122 |
+
"""
|
123 |
+
role_prefix_mapping = {
|
124 |
+
'user': '<|im_start|>user\n',
|
125 |
+
'assistant': '<|im_start|>assistant\n'
|
126 |
+
}
|
127 |
+
role = 'user'
|
128 |
+
prompt = ''
|
129 |
+
for message in messages:
|
130 |
+
role = message['role']
|
131 |
+
content = message['content']
|
132 |
+
prompt += role_prefix_mapping[role] + content + '<|im_end|>\n'
|
133 |
+
if role == 'user':
|
134 |
+
prompt += '<|im_start|>assistant\n'
|
135 |
+
return prompt
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def chat(self,
|
139 |
+
messages: List[dict],
|
140 |
+
tokenizer: PreTrainedTokenizer,
|
141 |
+
image_processor: object,
|
142 |
+
generation_config: dict = None) -> str:
|
143 |
+
"""Generate a response to the input prompt.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
messages (List[dict]): The input messages.
|
147 |
+
tokenizer (PreTrainedTokenizer): The tokenizer to use.
|
148 |
+
image_processor (object): The image processor to use.
|
149 |
+
generation_config (dict, optional): The generation config.
|
150 |
+
Defaults to None.
|
151 |
+
Returns:
|
152 |
+
str: The generated response.
|
153 |
+
"""
|
154 |
+
prompt, images, image_grid_thws = self.construct_prompt(
|
155 |
+
messages, image_processor
|
156 |
+
)
|
157 |
+
images = np.array(images)
|
158 |
+
images = torch.from_numpy(images).to(self.vision_encoder.device).to(self.vision_encoder.dtype) # noqa
|
159 |
+
image_grid_thws = np.concatenate(image_grid_thws, axis=0)
|
160 |
+
image_grid_thws = (
|
161 |
+
torch.from_numpy(image_grid_thws)
|
162 |
+
.cuda()
|
163 |
+
.long()
|
164 |
+
)
|
165 |
+
image_features = self.vision_encoder(images, grid_thw=image_grid_thws)
|
166 |
+
image_features = self.vision_projector(image_features.to(torch.bfloat16))
|
167 |
+
model_inputs = tokenizer(prompt, return_tensors='pt')
|
168 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
169 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
170 |
+
# stop token
|
171 |
+
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
172 |
+
# image token
|
173 |
+
image_token_id = tokenizer.convert_tokens_to_ids("<|image_pad|>")
|
174 |
+
generation_config.update(
|
175 |
+
{
|
176 |
+
'eos_token_id': eos_token_id,
|
177 |
+
}
|
178 |
+
)
|
179 |
+
outputs = self.generate(
|
180 |
+
input_ids=input_ids,
|
181 |
+
image_grid_thws=image_grid_thws,
|
182 |
+
attention_mask=attention_mask,
|
183 |
+
image_features=[image_features],
|
184 |
+
image_token_id=image_token_id,
|
185 |
+
**generation_config
|
186 |
+
)
|
187 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
188 |
+
return response
|
189 |
+
|
190 |
+
def _split_input_ids(self, input_ids, special_token):
|
191 |
+
special_pos = input_ids == special_token
|
192 |
+
pos = (special_pos[:-1] != special_pos[1:]).nonzero() + 1
|
193 |
+
if pos.shape[0] % 2 != 0:
|
194 |
+
pos = torch.cat([torch.tensor([[0]]).to(pos.device), pos])
|
195 |
+
pos = pos.reshape(-1, 2).tolist()
|
196 |
+
return pos
|
197 |
+
|
198 |
+
def generate(self,
|
199 |
+
input_ids: torch.LongTensor,
|
200 |
+
image_grid_thws: torch.LongTensor,
|
201 |
+
attention_mask: torch.LongTensor,
|
202 |
+
image_features: List[torch.Tensor],
|
203 |
+
image_token_id: int,
|
204 |
+
generation_config: Optional[dict] = None,
|
205 |
+
output_hidden_states: Optional[bool] = None,
|
206 |
+
**generate_kwargs) -> torch.LongTensor:
|
207 |
+
input_embeddings = self.llm.model.embed_tokens(input_ids)
|
208 |
+
batch_size = input_ids.shape[0]
|
209 |
+
assert len(image_features) == batch_size
|
210 |
+
for i in range(batch_size):
|
211 |
+
pos = self._split_input_ids(input_ids[i], image_token_id)
|
212 |
+
assert len(pos) == len(image_grid_thws)
|
213 |
+
image_pos = [
|
214 |
+
int(image_grid_thw[1] * image_grid_thw[2] / 4)
|
215 |
+
for image_grid_thw in image_grid_thws
|
216 |
+
]
|
217 |
+
image_pos.insert(0, 0)
|
218 |
+
image_pos = np.cumsum(image_pos)
|
219 |
+
for j, (start, end) in enumerate(pos):
|
220 |
+
input_embeddings[i, start:end] = \
|
221 |
+
image_features[i][image_pos[j]:image_pos[j+1]]
|
222 |
+
outputs = self.llm.generate(
|
223 |
+
inputs_embeds=input_embeddings,
|
224 |
+
attention_mask=attention_mask,
|
225 |
+
generation_config=generation_config,
|
226 |
+
output_hidden_states=output_hidden_states,
|
227 |
+
use_cache=True,
|
228 |
+
**generate_kwargs
|
229 |
+
)
|
230 |
+
return outputs
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"resample": 3,
|
22 |
+
"rescale_factor": 0.00392156862745098,
|
23 |
+
"size": {
|
24 |
+
"max_pixels": 12845056,
|
25 |
+
"min_pixels": 3136
|
26 |
+
},
|
27 |
+
"temporal_patch_size": 2,
|
28 |
+
"processor_class": "Qwen2VLProcessor"
|
29 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|