YuanLiuuuuuu commited on
Commit
7a3ca4f
·
verified ·
1 Parent(s): 45075a9

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/logo.png filter=lfs diff=lfs merge=lfs -text
LICENSE.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tencent is pleased to support the open source community by making POINTS-Reader available.
2
+
3
+ Copyright (C) 2025 Tencent. All rights reserved.
4
+
5
+ POINTS-Reader is licensed under the POINTS-Reader License, except for the third-party components listed in the NOTICE file, which are licensed under their respective terms. Those third-party components remain solely subject to their original licenses, with no additional limitations imposed by us. Users must comply with all terms and conditions of original licenses of those third-party components and must ensure that the usage of the third party components adheres to all relevant laws and regulations. You may refer to the NOTICE file for further information.
6
+
7
+ For the avoidance of doubt, POINTS-Reader refers only to the code, parameters, and weights as made publicly available by Tencent under the POINTS-Reader License.
8
+
9
+ Terms of the POINTS-Reader License:
10
+ --------------------------------------------------------------------
11
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
12
+
13
+ - You agree to use the POINTS-Reader only for research or evaluation purposes, and shall not use it for any commercial or production purposes under any circumstances.
14
+
15
+ - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
16
+
17
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
NOTICE.txt ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tencent is pleased to support the open source community by making POINTS-Reader available.
2
+ Copyright (C) 2025 Tencent. All rights reserved.
3
+
4
+ The software and/or models listed below in this distribution may have been modified by Tencent ("Tencent Modifications"). All Tencent Modifications are Copyright (C) Tencent.
5
+
6
+ POINTS-Reader is built on and with the aid of the following open source software and models. Credits are given to these software and models for their contributions.
7
+
8
+ If you believe there are errors in the attribution below, you may submit your concerns to us for review and correction.
9
+
10
+
11
+
12
+ POINTS-Reader was built on Qwen2.5-3B-Instruct and fine-tuned by Tencent.
13
+
14
+ Qwen2.5-3B-Instruct is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
15
+
16
+ Terms of the Qwen RESEARCH LICENSE AGREEMENT:
17
+ --------------------------------------------------------------------
18
+ Qwen RESEARCH LICENSE AGREEMENT
19
+
20
+ Release Date: September 19, 2024
21
+
22
+ By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
23
+
24
+ 1. Definitions
25
+ a. This Qwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
26
+ b. "We" (or "Us") shall mean Alibaba Cloud.
27
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
28
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
29
+ e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
30
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
31
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
32
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
33
+ i. "Non-Commercial" shall mean for research or evaluation purposes only.
34
+
35
+ 2. Grant of Rights
36
+ a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
37
+ b. If you are commercially using the Materials, you shall request a license from us.
38
+
39
+ 3. Redistribution
40
+ You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
41
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
42
+ b. You shall cause any modified files to carry prominent notices stating that you changed the files;
43
+ c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
44
+ d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
45
+
46
+ 4. Rules of use
47
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
48
+ b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
49
+
50
+ 5. Intellectual Property
51
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
52
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
53
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
54
+ 6. Disclaimer of Warranty and Limitation of Liability
55
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
56
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
57
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
58
+ d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
59
+
60
+ 7. Survival and Termination.
61
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
62
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
63
+
64
+ 8. Governing Law and Jurisdiction.
65
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
66
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
67
+ 9. Other Terms and Conditions.
68
+ a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a separate license from us, if you use the Materials in ways not expressly agreed to in this Agreement.
69
+ b. We shall not be bound by any additional or different terms or conditions communicated by you unless expressly agreed.
70
+
71
+
72
+
73
+ POINTS-Reader was built with the aid of the following open source software.
74
+
75
+ Open Source Software Licensed under the Apahce-2.0:
76
+ --------------------------------------------------------------------
77
+ 1. transformers
78
+ Copyright 2018- The Hugging Face team. All rights reserved.
79
+
80
+ This software was modified by Tencent
81
+
82
+ Terms of the Apache-2.0:
83
+ --------------------------------------------------------------------
84
+ For license: Apache-2.0
85
+ -----------------------
86
+ Apache License
87
+ Version 2.0, January 2004
88
+ http://www.apache.org/licenses/
89
+
90
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
91
+
92
+ 1. Definitions.
93
+
94
+ "License" shall mean the terms and conditions for use, reproduction,
95
+ and distribution as defined by Sections 1 through 9 of this document.
96
+
97
+ "Licensor" shall mean the copyright owner or entity authorized by
98
+ the copyright owner that is granting the License.
99
+
100
+ "Legal Entity" shall mean the union of the acting entity and all
101
+ other entities that control, are controlled by, or are under common
102
+ control with that entity. For the purposes of this definition,
103
+ "control" means (i) the power, direct or indirect, to cause the
104
+ direction or management of such entity, whether by contract or
105
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
106
+ outstanding shares, or (iii) beneficial ownership of such entity.
107
+
108
+ "You" (or "Your") shall mean an individual or Legal Entity
109
+ exercising permissions granted by this License.
110
+
111
+ "Source" form shall mean the preferred form for making modifications,
112
+ including but not limited to software source code, documentation
113
+ source, and configuration files.
114
+
115
+ "Object" form shall mean any form resulting from mechanical
116
+ transformation or translation of a Source form, including but
117
+ not limited to compiled object code, generated documentation,
118
+ and conversions to other media types.
119
+
120
+ "Work" shall mean the work of authorship, whether in Source or
121
+ Object form, made available under the License, as indicated by a
122
+ copyright notice that is included in or attached to the work
123
+ (an example is provided in the Appendix below).
124
+
125
+ "Derivative Works" shall mean any work, whether in Source or Object
126
+ form, that is based on (or derived from) the Work and for which the
127
+ editorial revisions, annotations, elaborations, or other modifications
128
+ represent, as a whole, an original work of authorship. For the purposes
129
+ of this License, Derivative Works shall not include works that remain
130
+ separable from, or merely link (or bind by name) to the interfaces of,
131
+ the Work and Derivative Works thereof.
132
+
133
+ "Contribution" shall mean any work of authorship, including
134
+ the original version of the Work and any modifications or additions
135
+ to that Work or Derivative Works thereof, that is intentionally
136
+ submitted to Licensor for inclusion in the Work by the copyright owner
137
+ or by an individual or Legal Entity authorized to submit on behalf of
138
+ the copyright owner. For the purposes of this definition, "submitted"
139
+ means any form of electronic, verbal, or written communication sent
140
+ to the Licensor or its representatives, including but not limited to
141
+ communication on electronic mailing lists, source code control systems,
142
+ and issue tracking systems that are managed by, or on behalf of, the
143
+ Licensor for the purpose of discussing and improving the Work, but
144
+ excluding communication that is conspicuously marked or otherwise
145
+ designated in writing by the copyright owner as "Not a Contribution."
146
+
147
+ "Contributor" shall mean Licensor and any individual or Legal Entity
148
+ on behalf of whom a Contribution has been received by Licensor and
149
+ subsequently incorporated within the Work.
150
+
151
+ 2. Grant of Copyright License. Subject to the terms and conditions of
152
+ this License, each Contributor hereby grants to You a perpetual,
153
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
154
+ copyright license to reproduce, prepare Derivative Works of,
155
+ publicly display, publicly perform, sublicense, and distribute the
156
+ Work and such Derivative Works in Source or Object form.
157
+
158
+ 3. Grant of Patent License. Subject to the terms and conditions of
159
+ this License, each Contributor hereby grants to You a perpetual,
160
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
161
+ (except as stated in this section) patent license to make, have made,
162
+ use, offer to sell, sell, import, and otherwise transfer the Work,
163
+ where such license applies only to those patent claims licensable
164
+ by such Contributor that are necessarily infringed by their
165
+ Contribution(s) alone or by combination of their Contribution(s)
166
+ with the Work to which such Contribution(s) was submitted. If You
167
+ institute patent litigation against any entity (including a
168
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
169
+ or a Contribution incorporated within the Work constitutes direct
170
+ or contributory patent infringement, then any patent licenses
171
+ granted to You under this License for that Work shall terminate
172
+ as of the date such litigation is filed.
173
+
174
+ 4. Redistribution. You may reproduce and distribute copies of the
175
+ Work or Derivative Works thereof in any medium, with or without
176
+ modifications, and in Source or Object form, provided that You
177
+ meet the following conditions:
178
+
179
+ (a) You must give any other recipients of the Work or
180
+ Derivative Works a copy of this License; and
181
+
182
+ (b) You must cause any modified files to carry prominent notices
183
+ stating that You changed the files; and
184
+
185
+ (c) You must retain, in the Source form of any Derivative Works
186
+ that You distribute, all copyright, patent, trademark, and
187
+ attribution notices from the Source form of the Work,
188
+ excluding those notices that do not pertain to any part of
189
+ the Derivative Works; and
190
+
191
+ (d) If the Work includes a "NOTICE" text file as part of its
192
+ distribution, then any Derivative Works that You distribute must
193
+ include a readable copy of the attribution notices contained
194
+ within such NOTICE file, excluding those notices that do not
195
+ pertain to any part of the Derivative Works, in at least one
196
+ of the following places: within a NOTICE text file distributed
197
+ as part of the Derivative Works; within the Source form or
198
+ documentation, if provided along with the Derivative Works; or,
199
+ within a display generated by the Derivative Works, if and
200
+ wherever such third-party notices normally appear. The contents
201
+ of the NOTICE file are for informational purposes only and
202
+ do not modify the License. You may add Your own attribution
203
+ notices within Derivative Works that You distribute, alongside
204
+ or as an addendum to the NOTICE text from the Work, provided
205
+ that such additional attribution notices cannot be construed
206
+ as modifying the License.
207
+
208
+ You may add Your own copyright statement to Your modifications and
209
+ may provide additional or different license terms and conditions
210
+ for use, reproduction, or distribution of Your modifications, or
211
+ for any such Derivative Works as a whole, provided Your use,
212
+ reproduction, and distribution of the Work otherwise complies with
213
+ the conditions stated in this License.
214
+
215
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
216
+ any Contribution intentionally submitted for inclusion in the Work
217
+ by You to the Licensor shall be under the terms and conditions of
218
+ this License, without any additional terms or conditions.
219
+ Notwithstanding the above, nothing herein shall supersede or modify
220
+ the terms of any separate license agreement you may have executed
221
+ with Licensor regarding such Contributions.
222
+
223
+ 6. Trademarks. This License does not grant permission to use the trade
224
+ names, trademarks, service marks, or product names of the Licensor,
225
+ except as required for reasonable and customary use in describing the
226
+ origin of the Work and reproducing the content of the NOTICE file.
227
+
228
+ 7. Disclaimer of Warranty. Unless required by applicable law or
229
+ agreed to in writing, Licensor provides the Work (and each
230
+ Contributor provides its Contributions) on an "AS IS" BASIS,
231
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
232
+ implied, including, without limitation, any warranties or conditions
233
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
234
+ PARTICULAR PURPOSE. You are solely responsible for determining the
235
+ appropriateness of using or redistributing the Work and assume any
236
+ risks associated with Your exercise of permissions under this License.
237
+
238
+ 8. Limitation of Liability. In no event and under no legal theory,
239
+ whether in tort (including negligence), contract, or otherwise,
240
+ unless required by applicable law (such as deliberate and grossly
241
+ negligent acts) or agreed to in writing, shall any Contributor be
242
+ liable to You for damages, including any direct, indirect, special,
243
+ incidental, or consequential damages of any character arising as a
244
+ result of this License or out of the use or inability to use the
245
+ Work (including but not limited to damages for loss of goodwill,
246
+ work stoppage, computer failure or malfunction, or any and all
247
+ other commercial damages or losses), even if such Contributor
248
+ has been advised of the possibility of such damages.
249
+
250
+ 9. Accepting Warranty or Additional Liability. While redistributing
251
+ the Work or Derivative Works thereof, You may choose to offer,
252
+ and charge a fee for, acceptance of support, warranty, indemnity,
253
+ or other liability obligations and/or rights consistent with this
254
+ License. However, in accepting such obligations, You may act only
255
+ on Your own behalf and on Your sole responsibility, not on behalf
256
+ of any other Contributor, and only if You agree to indemnify,
257
+ defend, and hold each Contributor harmless for any liability
258
+ incurred by, or claims asserted against, such Contributor by reason
259
+ of your accepting any such warranty or additional liability.
260
+
261
+ END OF TERMS AND CONDITIONS
262
+
263
+
264
+ Open Source Software Licensed under the BSD-3-Clause:
265
+ --------------------------------------------------------------------
266
+ 1. torch
267
+ From PyTorch:
268
+
269
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
270
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
271
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
272
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
273
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
274
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
275
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
276
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
277
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
278
+
279
+ From Caffe2:
280
+
281
+ Copyright (c) 2016-present, Facebook Inc. All rights reserved.
282
+
283
+ All contributions by Facebook:
284
+ Copyright (c) 2016 Facebook Inc.
285
+
286
+ All contributions by Google:
287
+ Copyright (c) 2015 Google Inc.
288
+ All rights reserved.
289
+
290
+ All contributions by Yangqing Jia:
291
+ Copyright (c) 2015 Yangqing Jia
292
+ All rights reserved.
293
+
294
+ All contributions by Kakao Brain:
295
+ Copyright 2019-2020 Kakao Brain
296
+
297
+ All contributions by Cruise LLC:
298
+ Copyright (c) 2022 Cruise LLC.
299
+ All rights reserved.
300
+
301
+ All contributions by Arm:
302
+ Copyright (c) 2021, 2023-2024 Arm Limited and/or its affiliates
303
+
304
+ All contributions from Caffe:
305
+ Copyright(c) 2013, 2014, 2015, the respective contributors
306
+ All rights reserved.
307
+
308
+ All other contributions:
309
+ Copyright(c) 2015, 2016 the respective contributors
310
+ All rights reserved.
311
+
312
+ Terms of the BSD-3-Clause:
313
+ --------------------------------------------------------------------
314
+ For license: BSD-3-Clause
315
+ -------------------------
316
+ BSD 3-Clause License
317
+
318
+ Redistribution and use in source and binary forms, with or without
319
+ modification, are permitted provided that the following conditions are met:
320
+
321
+ 1. Redistributions of source code must retain the above copyright notice, this
322
+ list of conditions and the following disclaimer.
323
+
324
+ 2. Redistributions in binary form must reproduce the above copyright notice,
325
+ this list of conditions and the following disclaimer in the documentation
326
+ and/or other materials provided with the distribution.
327
+
328
+ 3. Neither the name of the copyright holder nor the names of its
329
+ contributors may be used to endorse or promote products derived from
330
+ this software without specific prior written permission.
331
+
332
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
333
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
334
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
335
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
336
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
337
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
338
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
339
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
340
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
341
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
342
+ ===========================
343
+ End of the Attribution Notice of this project.
344
+
README.md ADDED
@@ -0,0 +1,672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="images/logo.png" width="700"/>
3
+ <p>
4
+
5
+ <h1 align="center">
6
+ POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
7
+ </h1>
8
+
9
+ <p align="center">
10
+ <a href="https://huggingface.co/tencent/POINTS-Reader">
11
+ <img src="https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace" alt="HuggingFace">
12
+ </a>
13
+ <a href="">
14
+ <img src="https://img.shields.io/badge/arXiv__-POINTS--Reader-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="arXiv">
15
+ </a>
16
+ <a href="">
17
+ <img src="https://komarev.com/ghpvc/?username=tencent&repo=POINTS-Reader&color=brightgreen&label=Views" alt="view">
18
+ </a>
19
+ </p>
20
+
21
+ We are delighted to announce that the WePOINTS family has welcomed a new member: POINTS-Reader, a vision-language model for end-to-end document conversion.
22
+
23
+ ## News
24
+
25
+ - 2025.08.26: We released the weights of the most recent version of POINT-Reader🔥🔥🔥.
26
+ - 2025.08.21: POINTS-Reader is accepted by **EMNLP 2025** for presentation at the **Main Conference**🎉🎉🎉.
27
+
28
+ ## Introduction
29
+
30
+ 1. **Simplicity**: POINTS-Reader is a very streamlined model that fully follows the structure of POINTS1.5, except that we have replaced Qwen2.5-7B-Instruct with Qwen2.5-3B-Instruct. Moreover, the input and output of POINTS-Reader are extremely straightforward. The input consists of a fixed prompt and a document image, and the output contains only a string (text extracted from the document image). The model's output is the final result delivered to the user without any post-processing.
31
+
32
+ 2. **Performance**: Currently, POINTS-Reader supports extraction from both Chinese and English documents, achieving impressive results, with scores of 0.133 for English and 0.212 for Chinese on OmniDocBench.
33
+
34
+ 3. **High Throughput**: With current mainstream inference frameworks, such as SGLang and vLLM, optimization is predominantly focused on LLMs. Thus, a large ViT would significantly impact the model’s throughput, which is why we selected a ViT with a moderate number of parameters (600M NaViT used in POINTS1.5). Combined with our support for SGLang, we currently achieve a very satisfactory throughput. We will also provide support for vLLM in the future.
35
+
36
+ 4. **Open-source Technical Approach**: In the POINTS-Reader paper, we propose a two-stage data augmentation strategy. The first stage leverages automated data to endow the model with basic document extraction capabilities. In the subsequent stage, continuous self-evolution improves the quality of data generated by the model. The self-evolution approach in the second stage is highly extensible and can be applied to virtually any model.
37
+
38
+ ## Results
39
+
40
+ We take the following results from [OmniDocBench](https://github.com/opendatalab/OmniDocBench/tree/main) and POINTS-Reader for comparison:
41
+
42
+ <table style="width: 92%; margin: auto; border-collapse: collapse;">
43
+ <thead>
44
+ <tr>
45
+ <th rowspan="2">Method Type</th>
46
+ <th rowspan="2">Methods</th>
47
+ <th colspan="2">Overall<sup>Edit</sup>↓</th>
48
+ <th colspan="2">Text<sup>Edit</sup>↓</th>
49
+ <th colspan="2">Formula<sup>Edit</sup>↓</th>
50
+ <th colspan="2">Formula<sup>CDM</sup>↑</th>
51
+ <th colspan="2">Table<sup>TEDS</sup>↑</th>
52
+ <th colspan="2">Table<sup>Edit</sup>↓</th>
53
+ <th colspan="2">Read Order<sup>Edit</sup>↓</th>
54
+ </tr>
55
+ <tr>
56
+ <th>EN</th>
57
+ <th>ZH</th>
58
+ <th>EN</th>
59
+ <th>ZH</th>
60
+ <th>EN</th>
61
+ <th>ZH</th>
62
+ <th>EN</th>
63
+ <th>ZH</th>
64
+ <th>EN</th>
65
+ <th>ZH</th>
66
+ <th>EN</th>
67
+ <th>ZH</th>
68
+ <th>EN</th>
69
+ <th>ZH</th>
70
+ </tr>
71
+ </thead>
72
+ <tbody>
73
+ <tr>
74
+ <td rowspan="9">Pipeline Tools</td>
75
+ <td>MinerU-pipeline-2.1.1</td>
76
+ <td>0.162</td>
77
+ <td>0.244</td>
78
+ <td>0.072</td>
79
+ <td>0.111</td>
80
+ <td>0.313</td>
81
+ <td>0.581</td>
82
+ <td>79.2</td>
83
+ <td>48.8</td>
84
+ <td>77.4</td>
85
+ <td>79.5</td>
86
+ <td>0.166</td>
87
+ <td>0.15</td>
88
+ <td>0.097</td>
89
+ <td>0.136</td>
90
+ </tr>
91
+ <tr>
92
+ <td>Marker-1.2.3</td>
93
+ <td>0.336</td>
94
+ <td>0.556</td>
95
+ <td>0.08</td>
96
+ <td>0.315</td>
97
+ <td>0.53</td>
98
+ <td>0.883</td>
99
+ <td>17.6</td>
100
+ <td>11.7</td>
101
+ <td>67.6</td>
102
+ <td>49.2</td>
103
+ <td>0.619</td>
104
+ <td>0.685</td>
105
+ <td>0.114</td>
106
+ <td>0.34</td>
107
+ </tr>
108
+ <tr>
109
+ <td>Marker-1.7.1</td>
110
+ <td>0.296</td>
111
+ <td>0.497</td>
112
+ <td>0.085</td>
113
+ <td>0.293</td>
114
+ <td>0.374</td>
115
+ <td>0.688</td>
116
+ <td>79.0</td>
117
+ <td>36.7</td>
118
+ <td>67.6</td>
119
+ <td>54.0</td>
120
+ <td>0.609</td>
121
+ <td>0.678</td>
122
+ <td>0.116</td>
123
+ <td>0.329</td>
124
+ </tr>
125
+ <tr>
126
+ <td>PaddleOCR PP-StructureV3</td>
127
+ <td>0.145</td>
128
+ <td>0.206</td>
129
+ <td>0.058</td>
130
+ <td>0.088</td>
131
+ <td>0.295</td>
132
+ <td>0.535</td>
133
+ <td>81.8</td>
134
+ <td>52.1</td>
135
+ <td>77.2</td>
136
+ <td>83.9</td>
137
+ <td>0.159</td>
138
+ <td>0.109</td>
139
+ <td>0.069</td>
140
+ <td>0.091</td>
141
+ </tr>
142
+ <tr>
143
+ <td>Mathpix</td>
144
+ <td>0.191</td>
145
+ <td>0.364</td>
146
+ <td>0.105</td>
147
+ <td>0.381</td>
148
+ <td>0.306</td>
149
+ <td>0.454</td>
150
+ <td>82.7</td>
151
+ <td>64.6</td>
152
+ <td>77.0</td>
153
+ <td>67.1</td>
154
+ <td>0.243</td>
155
+ <td>0.32</td>
156
+ <td>0.108</td>
157
+ <td>0.304</td>
158
+ </tr>
159
+ <tr>
160
+ <td>Docling-2.14.0</td>
161
+ <td>0.589</td>
162
+ <td>0.909</td>
163
+ <td>0.416</td>
164
+ <td>0.987</td>
165
+ <td>0.999</td>
166
+ <td>1</td>
167
+ <td>-</td>
168
+ <td>-</td>
169
+ <td>61.3</td>
170
+ <td>25.0</td>
171
+ <td>0.627</td>
172
+ <td>0.810</td>
173
+ <td>0.313</td>
174
+ <td>0.837</td>
175
+ </tr>
176
+ <tr>
177
+ <td>Pix2Text-1.1.2.3</td>
178
+ <td>0.32</td>
179
+ <td>0.528</td>
180
+ <td>0.138</td>
181
+ <td>0.356</td>
182
+ <td>0.276</td>
183
+ <td>0.611</td>
184
+ <td>78.4</td>
185
+ <td>39.6</td>
186
+ <td>73.6</td>
187
+ <td>66.2</td>
188
+ <td>0.584</td>
189
+ <td>0.645</td>
190
+ <td>0.281</td>
191
+ <td>0.499</td>
192
+ </tr>
193
+ <tr>
194
+ <td>Unstructured-0.17.2</td>
195
+ <td>0.586</td>
196
+ <td>0.716</td>
197
+ <td>0.198</td>
198
+ <td>0.481</td>
199
+ <td>0.999</td>
200
+ <td>1</td>
201
+ <td>-</td>
202
+ <td>-</td>
203
+ <td>0</td>
204
+ <td>0.064</td>
205
+ <td>1</td>
206
+ <td>0.998</td>
207
+ <td>0.145</td>
208
+ <td>0.387</td>
209
+ </tr>
210
+ <tr>
211
+ <td>OpenParse-0.7.0</td>
212
+ <td>0.646</td>
213
+ <td>0.814</td>
214
+ <td>0.681</td>
215
+ <td>0.974</td>
216
+ <td>0.996</td>
217
+ <td>1</td>
218
+ <td>0.106</td>
219
+ <td>0</td>
220
+ <td>64.8</td>
221
+ <td>27.5</td>
222
+ <td>0.284</td>
223
+ <td>0.639</td>
224
+ <td>0.595</td>
225
+ <td>0.641</td>
226
+ </tr>
227
+ <tr>
228
+ <td rowspan="10">Expert VLMs</td>
229
+ <td>POINTS-Reader-3B</td>
230
+ <td>0.133</td>
231
+ <td>0.212</td>
232
+ <td>0.062</td>
233
+ <td>0.139</td>
234
+ <td>0.304</td>
235
+ <td>0.465</td>
236
+ <td>-</td>
237
+ <td>-</td>
238
+ <td>83.7</td>
239
+ <td>85.0</td>
240
+ <td>0.128</td>
241
+ <td>0.136</td>
242
+ <td>0.036</td>
243
+ <td>0.106</td>
244
+ </tr>
245
+ <tr>
246
+ <td>MinerU2.0-2505-0.9B</td>
247
+ <td>0.133</td>
248
+ <td>0.238</td>
249
+ <td>0.045</td>
250
+ <td>0.115</td>
251
+ <td>0.273</td>
252
+ <td>0.506</td>
253
+ <td>79.0</td>
254
+ <td>50.8</td>
255
+ <td>82.1</td>
256
+ <td>83.4</td>
257
+ <td>0.15</td>
258
+ <td>0.209</td>
259
+ <td>0.066</td>
260
+ <td>0.122</td>
261
+ </tr>
262
+ <tr>
263
+ <td>MonkeyOCR-pro-1.2B</td>
264
+ <td>0.146</td>
265
+ <td>0.221</td>
266
+ <td>0.068</td>
267
+ <td>0.118</td>
268
+ <td>0.272</td>
269
+ <td>0.452</td>
270
+ <td>76.7</td>
271
+ <td>63.3</td>
272
+ <td>81.3</td>
273
+ <td>85.5</td>
274
+ <td>0.149</td>
275
+ <td>0.134</td>
276
+ <td>0.093</td>
277
+ <td>0.179</td>
278
+ </tr>
279
+ <tr>
280
+ <td>Dolphin</td>
281
+ <td>0.356</td>
282
+ <td>0.440</td>
283
+ <td>0.352</td>
284
+ <td>0.440</td>
285
+ <td>0.465</td>
286
+ <td>0.604</td>
287
+ <td>61.6</td>
288
+ <td>40.4</td>
289
+ <td>70.2</td>
290
+ <td>56.8</td>
291
+ <td>0.258</td>
292
+ <td>0.367</td>
293
+ <td>0.35</td>
294
+ <td>0.351</td>
295
+ </tr>
296
+ <tr>
297
+ <td>Nanonets-OCR-s</td>
298
+ <td>0.283</td>
299
+ <td>0.295</td>
300
+ <td>0.134</td>
301
+ <td>0.231</td>
302
+ <td>0.518</td>
303
+ <td>0.546</td>
304
+ <td>63.2</td>
305
+ <td>52.0</td>
306
+ <td>76.8</td>
307
+ <td>79.4</td>
308
+ <td>0.343</td>
309
+ <td>0.201</td>
310
+ <td>0.135</td>
311
+ <td>0.2</td>
312
+ </tr>
313
+ <tr>
314
+ <td>OCRFlux-3B</td>
315
+ <td>0.238</td>
316
+ <td>0.349</td>
317
+ <td>0.112</td>
318
+ <td>0.256</td>
319
+ <td>0.447</td>
320
+ <td>0.716</td>
321
+ <td>60.2</td>
322
+ <td>31.9</td>
323
+ <td>69.0</td>
324
+ <td>80.0</td>
325
+ <td>0.269</td>
326
+ <td>0.162</td>
327
+ <td>0.126</td>
328
+ <td>0.263</td>
329
+ </tr>
330
+ <tr>
331
+ <td>GOT-OCR</td>
332
+ <td>0.287</td>
333
+ <td>0.411</td>
334
+ <td>0.189</td>
335
+ <td>0.315</td>
336
+ <td>0.360</td>
337
+ <td>0.528</td>
338
+ <td>74.3</td>
339
+ <td>45.3</td>
340
+ <td>53.2</td>
341
+ <td>47.2</td>
342
+ <td>0.459</td>
343
+ <td>0.52</td>
344
+ <td>0.141</td>
345
+ <td>0.28</td>
346
+ </tr>
347
+ <tr>
348
+ <td>Nougat</td>
349
+ <td>0.452</td>
350
+ <td>0.973</td>
351
+ <td>0.365</td>
352
+ <td>0.998</td>
353
+ <td>0.488</td>
354
+ <td>0.941</td>
355
+ <td>15.1</td>
356
+ <td>16.8</td>
357
+ <td>39.9</td>
358
+ <td>0.0</td>
359
+ <td>0.572</td>
360
+ <td>1.000</td>
361
+ <td>0.382</td>
362
+ <td>0.954</td>
363
+ </tr>
364
+ <tr>
365
+ <td>Mistral OCR</td>
366
+ <td>0.268</td>
367
+ <td>0.439</td>
368
+ <td>0.072</td>
369
+ <td>0.325</td>
370
+ <td>0.318</td>
371
+ <td>0.495</td>
372
+ <td>64.6</td>
373
+ <td>45.9</td>
374
+ <td>75.8</td>
375
+ <td>63.6</td>
376
+ <td>0.6</td>
377
+ <td>0.65</td>
378
+ <td>0.083</td>
379
+ <td>0.284</td>
380
+ </tr>
381
+ <tr>
382
+ <td>OLMOCR-sglang</td>
383
+ <td>0.326</td>
384
+ <td>0.469</td>
385
+ <td>0.097</td>
386
+ <td>0.293</td>
387
+ <td>0.455</td>
388
+ <td>0.655</td>
389
+ <td>74.3</td>
390
+ <td>43.2</td>
391
+ <td>68.1</td>
392
+ <td>61.3</td>
393
+ <td>0.608</td>
394
+ <td>0.652</td>
395
+ <td>0.145</td>
396
+ <td>0.277</td>
397
+ </tr>
398
+ <tr>
399
+ <td>SmolDocling-256M_transformer</td>
400
+ <td>0.493</td>
401
+ <td>0.816</td>
402
+ <td>0.262</td>
403
+ <td>0.838</td>
404
+ <td>0.753</td>
405
+ <td>0.997</td>
406
+ <td>32.1</td>
407
+ <td>0.551</td>
408
+ <td>44.9</td>
409
+ <td>16.5</td>
410
+ <td>0.729</td>
411
+ <td>0.907</td>
412
+ <td>0.227</td>
413
+ <td>0.522</td>
414
+ </tr>
415
+ <tr>
416
+ <td rowspan="9">General VLMs</td>
417
+ <tr>
418
+ <td>Gemini2.0-flash</td>
419
+ <td>0.191</td>
420
+ <td>0.264</td>
421
+ <td>0.091</td>
422
+ <td>0.139</td>
423
+ <td>0.389</td>
424
+ <td>0.584</td>
425
+ <td>77.6</td>
426
+ <td>43.6</td>
427
+ <td>79.7</td>
428
+ <td>78.9</td>
429
+ <td>0.193</td>
430
+ <td>0.206</td>
431
+ <td>0.092</td>
432
+ <td>0.128</td>
433
+ </tr>
434
+ <tr>
435
+ <td>Gemini2.5-Pro</td>
436
+ <td>0.148</td>
437
+ <td>0.212</td>
438
+ <td>0.055</td>
439
+ <td>0.168</td>
440
+ <td>0.356</td>
441
+ <td>0.439</td>
442
+ <td>80.0</td>
443
+ <td>69.4</td>
444
+ <td>85.8</td>
445
+ <td>86.4</td>
446
+ <td>0.13</td>
447
+ <td>0.119</td>
448
+ <td>0.049</td>
449
+ <td>0.121</td>
450
+ </tr>
451
+ <tr>
452
+ <td>GPT4o</td>
453
+ <td>0.233</td>
454
+ <td>0.399</td>
455
+ <td>0.144</td>
456
+ <td>0.409</td>
457
+ <td>0.425</td>
458
+ <td>0.606</td>
459
+ <td>72.8</td>
460
+ <td>42.8</td>
461
+ <td>72.0</td>
462
+ <td>62.9</td>
463
+ <td>0.234</td>
464
+ <td>0.329</td>
465
+ <td>0.128</td>
466
+ <td>0.251</td>
467
+ </tr>
468
+ <tr>
469
+ <td>Qwen2-VL-72B</td>
470
+ <td>0.252</td>
471
+ <td>0.327</td>
472
+ <td>0.096</td>
473
+ <td>0.218</td>
474
+ <td>0.404</td>
475
+ <td>0.487</td>
476
+ <td>82.2</td>
477
+ <td>61.2</td>
478
+ <td>76.8</td>
479
+ <td>76.4</td>
480
+ <td>0.387</td>
481
+ <td>0.408</td>
482
+ <td>0.119</td>
483
+ <td>0.193</td>
484
+ </tr>
485
+ <tr>
486
+ <td>Qwen2.5-VL-7B</td>
487
+ <td>0.316</td>
488
+ <td>0.399</td>
489
+ <td>0.151</td>
490
+ <td>0.243</td>
491
+ <td>0.376</td>
492
+ <td>0.5</td>
493
+ <td>75.3</td>
494
+ <td>57.3</td>
495
+ <td>71.1</td>
496
+ <td>71.3</td>
497
+ <td>0.598</td>
498
+ <td>0.627</td>
499
+ <td>0.138</td>
500
+ <td>0.226</td>
501
+ </tr>
502
+
503
+ <tr>
504
+ <td>Qwen2.5-VL-72B</td>
505
+ <td>0.214</td>
506
+ <td>0.261</td>
507
+ <td>0.092</td>
508
+ <td>0.18</td>
509
+ <td>0.315</td>
510
+ <td>0.434</td>
511
+ <td>81.4</td>
512
+ <td>64.1</td>
513
+ <td>81.4</td>
514
+ <td>83.0</td>
515
+ <td>0.341</td>
516
+ <td>0.262</td>
517
+ <td>0.106</td>
518
+ <td>0.168</td>
519
+ </tr>
520
+ <tr>
521
+ <td>InternVL2-76B</td>
522
+ <td>0.44</td>
523
+ <td>0.443</td>
524
+ <td>0.353</td>
525
+ <td>0.290</td>
526
+ <td>0.543</td>
527
+ <td>0.701</td>
528
+ <td>67.4</td>
529
+ <td>44.1</td>
530
+ <td>63.0</td>
531
+ <td>60.2</td>
532
+ <td>0.547</td>
533
+ <td>0.555</td>
534
+ <td>0.317</td>
535
+ <td>0.228</td>
536
+ </tr>
537
+ <tr>
538
+ <td>InternVL3-78B</td>
539
+ <td>0.218</td>
540
+ <td>0.296</td>
541
+ <td>0.117</td>
542
+ <td>0.21</td>
543
+ <td>0.38</td>
544
+ <td>0.533</td>
545
+ <td>79.2</td>
546
+ <td>58.8</td>
547
+ <td>69.0</td>
548
+ <td>73.9</td>
549
+ <td>0.279</td>
550
+ <td>0.282</td>
551
+ <td>0.095</td>
552
+ <td>0.161</td>
553
+ </tr>
554
+ </tbody>
555
+ </table>
556
+
557
+ ## Getting Started
558
+
559
+ This following code snippet has been tested with following environment:
560
+
561
+ ```
562
+ python==3.10.12
563
+ torch==2.5.1
564
+ transformers==4.46.1
565
+ cuda==12.1
566
+ ```
567
+
568
+ If you encounter environment issues, please feel free to open an issue.
569
+
570
+ ### Run with Transformers
571
+
572
+ Before you run the following code, make sure you install the `WePOINTS` package by running:
573
+
574
+ ```
575
+ git clone https://github.com/WePOINTS/WePOINTS.git
576
+ cd WePOINTS
577
+ pip install -e.
578
+ ```
579
+
580
+ ```python
581
+ from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
582
+ from transformers import AutoModelForCausalLM, AutoTokenizer
583
+ import torch
584
+
585
+
586
+ # We recommend using the following prompt to better performance,
587
+ # since it is used throughout the training process.
588
+ prompt = (
589
+ 'Please extract all the text from the image with the following requirements:\n'
590
+ '1. Return tables in HTML format.\n'
591
+ '2. Return all other text in Markdown format.'
592
+ )
593
+ image_path = '/path/to/your/local/image'
594
+ model_path = 'tencent/POINTS-Reader'
595
+ model = AutoModelForCausalLM.from_pretrained(model_path,
596
+ trust_remote_code=True,
597
+ torch_dtype=torch.float16,
598
+ device_map='cuda')
599
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
600
+ image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)
601
+ content = [
602
+ dict(type='image', image=image_path),
603
+ dict(type='text', text=prompt)
604
+ ]
605
+ messages = [
606
+ {
607
+ 'role': 'user',
608
+ 'content': content
609
+ }
610
+ ]
611
+ generation_config = {
612
+ 'max_new_tokens': 2048,
613
+ 'repetition_penalty': 1.05,
614
+ 'temperature': 0.7,
615
+ 'top_p': 0.8,
616
+ 'top_k': 20,
617
+ 'do_sample': True
618
+ }
619
+ response = model.chat(
620
+ messages,
621
+ tokenizer,
622
+ image_processor,
623
+ generation_config
624
+ )
625
+ print(response)
626
+ ```
627
+
628
+ If you encounter issues like repeation, please try to increase the resolution of the image to allievate the problem.
629
+
630
+ ### Deploy with SGLang
631
+
632
+ We will create a Pull Request to SGLang, please stay tuned.
633
+
634
+ ## Known Issues
635
+
636
+ - **Complex Document Parsing**: POINTS-Reader can struggle with complex layouts (e.g., newspapers), often producing repeated or missing content.
637
+ - **Handwritten Document Parsing**: It also has difficulty handling handwritten inputs (e.g., receipts, notes), which can lead to recognition errors or omissions.
638
+ - **Multi-language Document Parsing**: POINTS-Reader currently supports only English and Chinese, limiting its effectiveness on other languages.
639
+
640
+ ## Citation
641
+
642
+ If you use this model in your work, please cite the following paper:
643
+
644
+ ```
645
+ @article{points-reader,
646
+ title={POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion},
647
+ author={Liu, Yuan and Zhongyin Zhao and Tian, Le and Haicheng Wang and Xubing Ye and Yangxiu You and Zilin Yu and Chuhan Wu and Zhou, Xiao and Yu, Yang and Zhou, Jie},
648
+ journal={},
649
+ year={2025}
650
+ }
651
+
652
+ @article{liu2024points1,
653
+ title={POINTS1. 5: Building a Vision-Language Model towards Real World Applications},
654
+ author={Liu, Yuan and Tian, Le and Zhou, Xiao and Gao, Xinyu and Yu, Kavio and Yu, Yang and Zhou, Jie},
655
+ journal={arXiv preprint arXiv:2412.08443},
656
+ year={2024}
657
+ }
658
+
659
+ @article{liu2024points,
660
+ title={POINTS: Improving Your Vision-language Model with Affordable Strategies},
661
+ author={Liu, Yuan and Zhao, Zhongyin and Zhuang, Ziyuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
662
+ journal={arXiv preprint arXiv:2409.04828},
663
+ year={2024}
664
+ }
665
+
666
+ @article{liu2024rethinking,
667
+ title={Rethinking Overlooked Aspects in Vision-Language Models},
668
+ author={Liu, Yuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
669
+ journal={arXiv preprint arXiv:2405.11850},
670
+ year={2024}
671
+ }
672
+ ```
config.json ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "POINTSV15ChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_pointsv15_chat.POINTSV15ChatConfig",
8
+ "AutoModelForCausalLM": "modeling_pointsv15_chat.POINTSV15ChatModel"
9
+ },
10
+ "llm_config": {
11
+ "_attn_implementation_autoset": true,
12
+ "_name_or_path": "",
13
+ "add_cross_attention": false,
14
+ "architectures": null,
15
+ "attention_dropout": 0.0,
16
+ "bad_words_ids": null,
17
+ "begin_suppress_tokens": null,
18
+ "bos_token_id": null,
19
+ "chunk_size_feed_forward": 0,
20
+ "cross_attention_hidden_size": null,
21
+ "decoder_start_token_id": null,
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "early_stopping": false,
25
+ "encoder_no_repeat_ngram_size": 0,
26
+ "eos_token_id": null,
27
+ "exponential_decay_length_penalty": null,
28
+ "finetuning_task": null,
29
+ "forced_bos_token_id": null,
30
+ "forced_eos_token_id": null,
31
+ "hidden_act": "silu",
32
+ "hidden_size": 2048,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 11008,
39
+ "is_decoder": false,
40
+ "is_encoder_decoder": false,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1
44
+ },
45
+ "length_penalty": 1.0,
46
+ "max_length": 20,
47
+ "max_position_embeddings": 32768,
48
+ "max_window_layers": 28,
49
+ "min_length": 0,
50
+ "model_type": "qwen2",
51
+ "no_repeat_ngram_size": 0,
52
+ "num_attention_heads": 16,
53
+ "num_beam_groups": 1,
54
+ "num_beams": 1,
55
+ "num_hidden_layers": 36,
56
+ "num_key_value_heads": 2,
57
+ "num_return_sequences": 1,
58
+ "output_attentions": false,
59
+ "output_hidden_states": false,
60
+ "output_scores": false,
61
+ "pad_token_id": null,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "pruned_heads": {},
65
+ "remove_invalid_values": false,
66
+ "repetition_penalty": 1.0,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "rms_norm_eps": 1e-06,
70
+ "rope_scaling": null,
71
+ "rope_theta": 1000000.0,
72
+ "sep_token_id": null,
73
+ "sliding_window": null,
74
+ "suppress_tokens": null,
75
+ "task_specific_params": null,
76
+ "temperature": 1.0,
77
+ "tf_legacy_loss": false,
78
+ "tie_encoder_decoder": false,
79
+ "tie_word_embeddings": false,
80
+ "tokenizer_class": null,
81
+ "top_k": 50,
82
+ "top_p": 1.0,
83
+ "torch_dtype": null,
84
+ "torchscript": false,
85
+ "transformers_version": "4.46.1",
86
+ "typical_p": 1.0,
87
+ "use_bfloat16": false,
88
+ "use_cache": true,
89
+ "use_sliding_window": false,
90
+ "vocab_size": 151936
91
+ },
92
+ "torch_dtype": "bfloat16",
93
+ "transformers_version": null,
94
+ "vision_config": {
95
+ "_attn_implementation_autoset": false,
96
+ "_name_or_path": "",
97
+ "add_cross_attention": false,
98
+ "architectures": null,
99
+ "bad_words_ids": null,
100
+ "begin_suppress_tokens": null,
101
+ "bos_token_id": null,
102
+ "chunk_size_feed_forward": 0,
103
+ "cross_attention_hidden_size": null,
104
+ "decoder_start_token_id": null,
105
+ "depth": 32,
106
+ "diversity_penalty": 0.0,
107
+ "do_sample": false,
108
+ "early_stopping": false,
109
+ "embed_dim": 1280,
110
+ "encoder_no_repeat_ngram_size": 0,
111
+ "eos_token_id": null,
112
+ "exponential_decay_length_penalty": null,
113
+ "finetuning_task": null,
114
+ "forced_bos_token_id": null,
115
+ "forced_eos_token_id": null,
116
+ "hidden_act": "quick_gelu",
117
+ "hidden_size": 3584,
118
+ "id2label": {
119
+ "0": "LABEL_0",
120
+ "1": "LABEL_1"
121
+ },
122
+ "in_channels": 3,
123
+ "in_chans": 3,
124
+ "is_decoder": false,
125
+ "is_encoder_decoder": false,
126
+ "label2id": {
127
+ "LABEL_0": 0,
128
+ "LABEL_1": 1
129
+ },
130
+ "length_penalty": 1.0,
131
+ "max_length": 20,
132
+ "min_length": 0,
133
+ "mlp_ratio": 4,
134
+ "model_type": "qwen2_vl",
135
+ "no_repeat_ngram_size": 0,
136
+ "num_beam_groups": 1,
137
+ "num_beams": 1,
138
+ "num_heads": 16,
139
+ "num_return_sequences": 1,
140
+ "output_attentions": false,
141
+ "output_hidden_states": false,
142
+ "output_scores": false,
143
+ "pad_token_id": null,
144
+ "patch_size": 14,
145
+ "prefix": null,
146
+ "problem_type": null,
147
+ "pruned_heads": {},
148
+ "remove_invalid_values": false,
149
+ "repetition_penalty": 1.0,
150
+ "return_dict": true,
151
+ "return_dict_in_generate": false,
152
+ "sep_token_id": null,
153
+ "spatial_merge_size": 2,
154
+ "spatial_patch_size": 14,
155
+ "suppress_tokens": null,
156
+ "task_specific_params": null,
157
+ "temperature": 1.0,
158
+ "temporal_patch_size": 2,
159
+ "tf_legacy_loss": false,
160
+ "tie_encoder_decoder": false,
161
+ "tie_word_embeddings": true,
162
+ "tokenizer_class": null,
163
+ "top_k": 50,
164
+ "top_p": 1.0,
165
+ "torch_dtype": "bfloat16",
166
+ "torchscript": false,
167
+ "transformers_version": "4.46.1",
168
+ "typical_p": 1.0,
169
+ "use_bfloat16": false
170
+ },
171
+ "image_token_id": 151655
172
+ }
configuration_pointsv15_chat.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from typing import Any, Dict
3
+
4
+ from transformers import PretrainedConfig, Qwen2Config
5
+
6
+ try:
7
+ from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
8
+ except ImportError:
9
+ print('Please upgrade transformers to version 4.46.3 or higher')
10
+
11
+
12
+ class POINTSV15ChatConfig(PretrainedConfig):
13
+ model_type = "pointsv1.5_chat"
14
+ is_composition = True
15
+ """Configuration class for `POINTSV1.5`."""
16
+
17
+ def __init__(self,
18
+ **kwargs) -> None:
19
+ super().__init__(**kwargs)
20
+ vision_config = kwargs.pop("vision_config", None)
21
+ llm_config = kwargs.pop("llm_config", None)
22
+ if isinstance(vision_config, dict):
23
+ self.vision_config = Qwen2VLVisionConfig(**vision_config)
24
+ else:
25
+ self.vision_config = vision_config
26
+ if isinstance(llm_config, dict):
27
+ self.llm_config = Qwen2Config(**llm_config)
28
+ else:
29
+ self.llm_config = llm_config
30
+
31
+ def to_dict(self) -> Dict[str, Any]:
32
+ output = copy.deepcopy(self.__dict__)
33
+ output["vision_config"] = self.vision_config.to_dict()
34
+ output["llm_config"] = self.llm_config.to_dict()
35
+ return output
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.46.1"
4
+ }
images/logo.png ADDED

Git LFS Details

  • SHA256: 248859f7a856f8dc12ddd69793d33aeaed37b56631e7d79d86398193aad040b6
  • Pointer size: 131 Bytes
  • Size of remote file: 149 kB
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5190e74560cf08e67e49d2ad21efa5c47e89a7b909039fe7c0e16e4ff2ce9a9
3
+ size 4957561680
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59b8e93d19f41beee32f672a06dea97dfa120733142dff2638d4e7041c365df
3
+ size 3261679960
model.safetensors.index.json ADDED
@@ -0,0 +1,839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8219145216
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "llm.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "llm.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "llm.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "llm.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "llm.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "llm.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "llm.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "llm.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "llm.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "llm.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "llm.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "llm.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "llm.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "llm.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "llm.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "llm.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "llm.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "llm.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "llm.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "llm.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "llm.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "llm.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "llm.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "llm.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "llm.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "llm.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "llm.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "llm.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "llm.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "llm.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "llm.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "llm.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "llm.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "llm.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "llm.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "llm.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "llm.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "llm.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "llm.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "llm.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "llm.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "llm.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "llm.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "llm.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "llm.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "llm.model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "llm.model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "llm.model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "llm.model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "llm.model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "llm.model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "llm.model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "llm.model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "llm.model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "llm.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "llm.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "llm.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "llm.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "llm.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "llm.model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "llm.model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "llm.model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "llm.model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "llm.model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "llm.model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "llm.model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "llm.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "llm.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "llm.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "llm.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "llm.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "llm.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "llm.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "llm.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "llm.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "llm.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "llm.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "llm.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "llm.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "llm.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "llm.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "llm.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "llm.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "llm.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "llm.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "llm.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "llm.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "llm.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "llm.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "llm.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "llm.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "llm.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "llm.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "llm.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "llm.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "llm.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "llm.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "llm.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "llm.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "llm.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "llm.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "llm.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "llm.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "llm.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "llm.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "llm.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "llm.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "llm.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "llm.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "llm.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "llm.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "llm.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "llm.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "llm.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "llm.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "llm.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "llm.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "llm.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "llm.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "llm.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "llm.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "llm.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "llm.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "llm.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "llm.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "llm.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "llm.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "llm.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "llm.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "llm.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "llm.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "llm.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "llm.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "llm.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "llm.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "llm.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "llm.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "llm.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "llm.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "llm.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "llm.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "llm.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "llm.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "llm.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "llm.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "llm.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "llm.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "llm.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "llm.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "llm.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "llm.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "llm.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "llm.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "llm.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "llm.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "llm.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "llm.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "llm.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "llm.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "llm.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "llm.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "llm.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "llm.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "llm.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "llm.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "llm.model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "vision_encoder.blocks.0.attn.proj.bias": "model-00002-of-00002.safetensors",
442
+ "vision_encoder.blocks.0.attn.proj.weight": "model-00002-of-00002.safetensors",
443
+ "vision_encoder.blocks.0.attn.qkv.bias": "model-00002-of-00002.safetensors",
444
+ "vision_encoder.blocks.0.attn.qkv.weight": "model-00002-of-00002.safetensors",
445
+ "vision_encoder.blocks.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
446
+ "vision_encoder.blocks.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
447
+ "vision_encoder.blocks.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
448
+ "vision_encoder.blocks.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
449
+ "vision_encoder.blocks.0.norm1.bias": "model-00002-of-00002.safetensors",
450
+ "vision_encoder.blocks.0.norm1.weight": "model-00002-of-00002.safetensors",
451
+ "vision_encoder.blocks.0.norm2.bias": "model-00002-of-00002.safetensors",
452
+ "vision_encoder.blocks.0.norm2.weight": "model-00002-of-00002.safetensors",
453
+ "vision_encoder.blocks.1.attn.proj.bias": "model-00002-of-00002.safetensors",
454
+ "vision_encoder.blocks.1.attn.proj.weight": "model-00002-of-00002.safetensors",
455
+ "vision_encoder.blocks.1.attn.qkv.bias": "model-00002-of-00002.safetensors",
456
+ "vision_encoder.blocks.1.attn.qkv.weight": "model-00002-of-00002.safetensors",
457
+ "vision_encoder.blocks.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
458
+ "vision_encoder.blocks.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
459
+ "vision_encoder.blocks.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
460
+ "vision_encoder.blocks.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
461
+ "vision_encoder.blocks.1.norm1.bias": "model-00002-of-00002.safetensors",
462
+ "vision_encoder.blocks.1.norm1.weight": "model-00002-of-00002.safetensors",
463
+ "vision_encoder.blocks.1.norm2.bias": "model-00002-of-00002.safetensors",
464
+ "vision_encoder.blocks.1.norm2.weight": "model-00002-of-00002.safetensors",
465
+ "vision_encoder.blocks.10.attn.proj.bias": "model-00002-of-00002.safetensors",
466
+ "vision_encoder.blocks.10.attn.proj.weight": "model-00002-of-00002.safetensors",
467
+ "vision_encoder.blocks.10.attn.qkv.bias": "model-00002-of-00002.safetensors",
468
+ "vision_encoder.blocks.10.attn.qkv.weight": "model-00002-of-00002.safetensors",
469
+ "vision_encoder.blocks.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
470
+ "vision_encoder.blocks.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
471
+ "vision_encoder.blocks.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
472
+ "vision_encoder.blocks.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
473
+ "vision_encoder.blocks.10.norm1.bias": "model-00002-of-00002.safetensors",
474
+ "vision_encoder.blocks.10.norm1.weight": "model-00002-of-00002.safetensors",
475
+ "vision_encoder.blocks.10.norm2.bias": "model-00002-of-00002.safetensors",
476
+ "vision_encoder.blocks.10.norm2.weight": "model-00002-of-00002.safetensors",
477
+ "vision_encoder.blocks.11.attn.proj.bias": "model-00002-of-00002.safetensors",
478
+ "vision_encoder.blocks.11.attn.proj.weight": "model-00002-of-00002.safetensors",
479
+ "vision_encoder.blocks.11.attn.qkv.bias": "model-00002-of-00002.safetensors",
480
+ "vision_encoder.blocks.11.attn.qkv.weight": "model-00002-of-00002.safetensors",
481
+ "vision_encoder.blocks.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
482
+ "vision_encoder.blocks.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
483
+ "vision_encoder.blocks.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
484
+ "vision_encoder.blocks.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
485
+ "vision_encoder.blocks.11.norm1.bias": "model-00002-of-00002.safetensors",
486
+ "vision_encoder.blocks.11.norm1.weight": "model-00002-of-00002.safetensors",
487
+ "vision_encoder.blocks.11.norm2.bias": "model-00002-of-00002.safetensors",
488
+ "vision_encoder.blocks.11.norm2.weight": "model-00002-of-00002.safetensors",
489
+ "vision_encoder.blocks.12.attn.proj.bias": "model-00002-of-00002.safetensors",
490
+ "vision_encoder.blocks.12.attn.proj.weight": "model-00002-of-00002.safetensors",
491
+ "vision_encoder.blocks.12.attn.qkv.bias": "model-00002-of-00002.safetensors",
492
+ "vision_encoder.blocks.12.attn.qkv.weight": "model-00002-of-00002.safetensors",
493
+ "vision_encoder.blocks.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
494
+ "vision_encoder.blocks.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
495
+ "vision_encoder.blocks.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
496
+ "vision_encoder.blocks.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
497
+ "vision_encoder.blocks.12.norm1.bias": "model-00002-of-00002.safetensors",
498
+ "vision_encoder.blocks.12.norm1.weight": "model-00002-of-00002.safetensors",
499
+ "vision_encoder.blocks.12.norm2.bias": "model-00002-of-00002.safetensors",
500
+ "vision_encoder.blocks.12.norm2.weight": "model-00002-of-00002.safetensors",
501
+ "vision_encoder.blocks.13.attn.proj.bias": "model-00002-of-00002.safetensors",
502
+ "vision_encoder.blocks.13.attn.proj.weight": "model-00002-of-00002.safetensors",
503
+ "vision_encoder.blocks.13.attn.qkv.bias": "model-00002-of-00002.safetensors",
504
+ "vision_encoder.blocks.13.attn.qkv.weight": "model-00002-of-00002.safetensors",
505
+ "vision_encoder.blocks.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
506
+ "vision_encoder.blocks.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
507
+ "vision_encoder.blocks.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
508
+ "vision_encoder.blocks.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
509
+ "vision_encoder.blocks.13.norm1.bias": "model-00002-of-00002.safetensors",
510
+ "vision_encoder.blocks.13.norm1.weight": "model-00002-of-00002.safetensors",
511
+ "vision_encoder.blocks.13.norm2.bias": "model-00002-of-00002.safetensors",
512
+ "vision_encoder.blocks.13.norm2.weight": "model-00002-of-00002.safetensors",
513
+ "vision_encoder.blocks.14.attn.proj.bias": "model-00002-of-00002.safetensors",
514
+ "vision_encoder.blocks.14.attn.proj.weight": "model-00002-of-00002.safetensors",
515
+ "vision_encoder.blocks.14.attn.qkv.bias": "model-00002-of-00002.safetensors",
516
+ "vision_encoder.blocks.14.attn.qkv.weight": "model-00002-of-00002.safetensors",
517
+ "vision_encoder.blocks.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
518
+ "vision_encoder.blocks.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
519
+ "vision_encoder.blocks.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
520
+ "vision_encoder.blocks.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
521
+ "vision_encoder.blocks.14.norm1.bias": "model-00002-of-00002.safetensors",
522
+ "vision_encoder.blocks.14.norm1.weight": "model-00002-of-00002.safetensors",
523
+ "vision_encoder.blocks.14.norm2.bias": "model-00002-of-00002.safetensors",
524
+ "vision_encoder.blocks.14.norm2.weight": "model-00002-of-00002.safetensors",
525
+ "vision_encoder.blocks.15.attn.proj.bias": "model-00002-of-00002.safetensors",
526
+ "vision_encoder.blocks.15.attn.proj.weight": "model-00002-of-00002.safetensors",
527
+ "vision_encoder.blocks.15.attn.qkv.bias": "model-00002-of-00002.safetensors",
528
+ "vision_encoder.blocks.15.attn.qkv.weight": "model-00002-of-00002.safetensors",
529
+ "vision_encoder.blocks.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
530
+ "vision_encoder.blocks.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
531
+ "vision_encoder.blocks.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
532
+ "vision_encoder.blocks.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
533
+ "vision_encoder.blocks.15.norm1.bias": "model-00002-of-00002.safetensors",
534
+ "vision_encoder.blocks.15.norm1.weight": "model-00002-of-00002.safetensors",
535
+ "vision_encoder.blocks.15.norm2.bias": "model-00002-of-00002.safetensors",
536
+ "vision_encoder.blocks.15.norm2.weight": "model-00002-of-00002.safetensors",
537
+ "vision_encoder.blocks.16.attn.proj.bias": "model-00002-of-00002.safetensors",
538
+ "vision_encoder.blocks.16.attn.proj.weight": "model-00002-of-00002.safetensors",
539
+ "vision_encoder.blocks.16.attn.qkv.bias": "model-00002-of-00002.safetensors",
540
+ "vision_encoder.blocks.16.attn.qkv.weight": "model-00002-of-00002.safetensors",
541
+ "vision_encoder.blocks.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
542
+ "vision_encoder.blocks.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
543
+ "vision_encoder.blocks.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
544
+ "vision_encoder.blocks.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
545
+ "vision_encoder.blocks.16.norm1.bias": "model-00002-of-00002.safetensors",
546
+ "vision_encoder.blocks.16.norm1.weight": "model-00002-of-00002.safetensors",
547
+ "vision_encoder.blocks.16.norm2.bias": "model-00002-of-00002.safetensors",
548
+ "vision_encoder.blocks.16.norm2.weight": "model-00002-of-00002.safetensors",
549
+ "vision_encoder.blocks.17.attn.proj.bias": "model-00002-of-00002.safetensors",
550
+ "vision_encoder.blocks.17.attn.proj.weight": "model-00002-of-00002.safetensors",
551
+ "vision_encoder.blocks.17.attn.qkv.bias": "model-00002-of-00002.safetensors",
552
+ "vision_encoder.blocks.17.attn.qkv.weight": "model-00002-of-00002.safetensors",
553
+ "vision_encoder.blocks.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
554
+ "vision_encoder.blocks.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
555
+ "vision_encoder.blocks.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
556
+ "vision_encoder.blocks.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
557
+ "vision_encoder.blocks.17.norm1.bias": "model-00002-of-00002.safetensors",
558
+ "vision_encoder.blocks.17.norm1.weight": "model-00002-of-00002.safetensors",
559
+ "vision_encoder.blocks.17.norm2.bias": "model-00002-of-00002.safetensors",
560
+ "vision_encoder.blocks.17.norm2.weight": "model-00002-of-00002.safetensors",
561
+ "vision_encoder.blocks.18.attn.proj.bias": "model-00002-of-00002.safetensors",
562
+ "vision_encoder.blocks.18.attn.proj.weight": "model-00002-of-00002.safetensors",
563
+ "vision_encoder.blocks.18.attn.qkv.bias": "model-00002-of-00002.safetensors",
564
+ "vision_encoder.blocks.18.attn.qkv.weight": "model-00002-of-00002.safetensors",
565
+ "vision_encoder.blocks.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
566
+ "vision_encoder.blocks.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
567
+ "vision_encoder.blocks.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
568
+ "vision_encoder.blocks.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
569
+ "vision_encoder.blocks.18.norm1.bias": "model-00002-of-00002.safetensors",
570
+ "vision_encoder.blocks.18.norm1.weight": "model-00002-of-00002.safetensors",
571
+ "vision_encoder.blocks.18.norm2.bias": "model-00002-of-00002.safetensors",
572
+ "vision_encoder.blocks.18.norm2.weight": "model-00002-of-00002.safetensors",
573
+ "vision_encoder.blocks.19.attn.proj.bias": "model-00002-of-00002.safetensors",
574
+ "vision_encoder.blocks.19.attn.proj.weight": "model-00002-of-00002.safetensors",
575
+ "vision_encoder.blocks.19.attn.qkv.bias": "model-00002-of-00002.safetensors",
576
+ "vision_encoder.blocks.19.attn.qkv.weight": "model-00002-of-00002.safetensors",
577
+ "vision_encoder.blocks.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
578
+ "vision_encoder.blocks.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
579
+ "vision_encoder.blocks.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
580
+ "vision_encoder.blocks.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
581
+ "vision_encoder.blocks.19.norm1.bias": "model-00002-of-00002.safetensors",
582
+ "vision_encoder.blocks.19.norm1.weight": "model-00002-of-00002.safetensors",
583
+ "vision_encoder.blocks.19.norm2.bias": "model-00002-of-00002.safetensors",
584
+ "vision_encoder.blocks.19.norm2.weight": "model-00002-of-00002.safetensors",
585
+ "vision_encoder.blocks.2.attn.proj.bias": "model-00002-of-00002.safetensors",
586
+ "vision_encoder.blocks.2.attn.proj.weight": "model-00002-of-00002.safetensors",
587
+ "vision_encoder.blocks.2.attn.qkv.bias": "model-00002-of-00002.safetensors",
588
+ "vision_encoder.blocks.2.attn.qkv.weight": "model-00002-of-00002.safetensors",
589
+ "vision_encoder.blocks.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
590
+ "vision_encoder.blocks.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
591
+ "vision_encoder.blocks.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
592
+ "vision_encoder.blocks.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
593
+ "vision_encoder.blocks.2.norm1.bias": "model-00002-of-00002.safetensors",
594
+ "vision_encoder.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
595
+ "vision_encoder.blocks.2.norm2.bias": "model-00002-of-00002.safetensors",
596
+ "vision_encoder.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
597
+ "vision_encoder.blocks.20.attn.proj.bias": "model-00002-of-00002.safetensors",
598
+ "vision_encoder.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
599
+ "vision_encoder.blocks.20.attn.qkv.bias": "model-00002-of-00002.safetensors",
600
+ "vision_encoder.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
601
+ "vision_encoder.blocks.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
602
+ "vision_encoder.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
603
+ "vision_encoder.blocks.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
604
+ "vision_encoder.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
605
+ "vision_encoder.blocks.20.norm1.bias": "model-00002-of-00002.safetensors",
606
+ "vision_encoder.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
607
+ "vision_encoder.blocks.20.norm2.bias": "model-00002-of-00002.safetensors",
608
+ "vision_encoder.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
609
+ "vision_encoder.blocks.21.attn.proj.bias": "model-00002-of-00002.safetensors",
610
+ "vision_encoder.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
611
+ "vision_encoder.blocks.21.attn.qkv.bias": "model-00002-of-00002.safetensors",
612
+ "vision_encoder.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
613
+ "vision_encoder.blocks.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
614
+ "vision_encoder.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
615
+ "vision_encoder.blocks.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
616
+ "vision_encoder.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
617
+ "vision_encoder.blocks.21.norm1.bias": "model-00002-of-00002.safetensors",
618
+ "vision_encoder.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
619
+ "vision_encoder.blocks.21.norm2.bias": "model-00002-of-00002.safetensors",
620
+ "vision_encoder.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
621
+ "vision_encoder.blocks.22.attn.proj.bias": "model-00002-of-00002.safetensors",
622
+ "vision_encoder.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
623
+ "vision_encoder.blocks.22.attn.qkv.bias": "model-00002-of-00002.safetensors",
624
+ "vision_encoder.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
625
+ "vision_encoder.blocks.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
626
+ "vision_encoder.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
627
+ "vision_encoder.blocks.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
628
+ "vision_encoder.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
629
+ "vision_encoder.blocks.22.norm1.bias": "model-00002-of-00002.safetensors",
630
+ "vision_encoder.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
631
+ "vision_encoder.blocks.22.norm2.bias": "model-00002-of-00002.safetensors",
632
+ "vision_encoder.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
633
+ "vision_encoder.blocks.23.attn.proj.bias": "model-00002-of-00002.safetensors",
634
+ "vision_encoder.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
635
+ "vision_encoder.blocks.23.attn.qkv.bias": "model-00002-of-00002.safetensors",
636
+ "vision_encoder.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
637
+ "vision_encoder.blocks.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
638
+ "vision_encoder.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
639
+ "vision_encoder.blocks.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
640
+ "vision_encoder.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
641
+ "vision_encoder.blocks.23.norm1.bias": "model-00002-of-00002.safetensors",
642
+ "vision_encoder.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
643
+ "vision_encoder.blocks.23.norm2.bias": "model-00002-of-00002.safetensors",
644
+ "vision_encoder.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
645
+ "vision_encoder.blocks.24.attn.proj.bias": "model-00002-of-00002.safetensors",
646
+ "vision_encoder.blocks.24.attn.proj.weight": "model-00002-of-00002.safetensors",
647
+ "vision_encoder.blocks.24.attn.qkv.bias": "model-00002-of-00002.safetensors",
648
+ "vision_encoder.blocks.24.attn.qkv.weight": "model-00002-of-00002.safetensors",
649
+ "vision_encoder.blocks.24.mlp.fc1.bias": "model-00002-of-00002.safetensors",
650
+ "vision_encoder.blocks.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
651
+ "vision_encoder.blocks.24.mlp.fc2.bias": "model-00002-of-00002.safetensors",
652
+ "vision_encoder.blocks.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
653
+ "vision_encoder.blocks.24.norm1.bias": "model-00002-of-00002.safetensors",
654
+ "vision_encoder.blocks.24.norm1.weight": "model-00002-of-00002.safetensors",
655
+ "vision_encoder.blocks.24.norm2.bias": "model-00002-of-00002.safetensors",
656
+ "vision_encoder.blocks.24.norm2.weight": "model-00002-of-00002.safetensors",
657
+ "vision_encoder.blocks.25.attn.proj.bias": "model-00002-of-00002.safetensors",
658
+ "vision_encoder.blocks.25.attn.proj.weight": "model-00002-of-00002.safetensors",
659
+ "vision_encoder.blocks.25.attn.qkv.bias": "model-00002-of-00002.safetensors",
660
+ "vision_encoder.blocks.25.attn.qkv.weight": "model-00002-of-00002.safetensors",
661
+ "vision_encoder.blocks.25.mlp.fc1.bias": "model-00002-of-00002.safetensors",
662
+ "vision_encoder.blocks.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
663
+ "vision_encoder.blocks.25.mlp.fc2.bias": "model-00002-of-00002.safetensors",
664
+ "vision_encoder.blocks.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
665
+ "vision_encoder.blocks.25.norm1.bias": "model-00002-of-00002.safetensors",
666
+ "vision_encoder.blocks.25.norm1.weight": "model-00002-of-00002.safetensors",
667
+ "vision_encoder.blocks.25.norm2.bias": "model-00002-of-00002.safetensors",
668
+ "vision_encoder.blocks.25.norm2.weight": "model-00002-of-00002.safetensors",
669
+ "vision_encoder.blocks.26.attn.proj.bias": "model-00002-of-00002.safetensors",
670
+ "vision_encoder.blocks.26.attn.proj.weight": "model-00002-of-00002.safetensors",
671
+ "vision_encoder.blocks.26.attn.qkv.bias": "model-00002-of-00002.safetensors",
672
+ "vision_encoder.blocks.26.attn.qkv.weight": "model-00002-of-00002.safetensors",
673
+ "vision_encoder.blocks.26.mlp.fc1.bias": "model-00002-of-00002.safetensors",
674
+ "vision_encoder.blocks.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
675
+ "vision_encoder.blocks.26.mlp.fc2.bias": "model-00002-of-00002.safetensors",
676
+ "vision_encoder.blocks.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
677
+ "vision_encoder.blocks.26.norm1.bias": "model-00002-of-00002.safetensors",
678
+ "vision_encoder.blocks.26.norm1.weight": "model-00002-of-00002.safetensors",
679
+ "vision_encoder.blocks.26.norm2.bias": "model-00002-of-00002.safetensors",
680
+ "vision_encoder.blocks.26.norm2.weight": "model-00002-of-00002.safetensors",
681
+ "vision_encoder.blocks.27.attn.proj.bias": "model-00002-of-00002.safetensors",
682
+ "vision_encoder.blocks.27.attn.proj.weight": "model-00002-of-00002.safetensors",
683
+ "vision_encoder.blocks.27.attn.qkv.bias": "model-00002-of-00002.safetensors",
684
+ "vision_encoder.blocks.27.attn.qkv.weight": "model-00002-of-00002.safetensors",
685
+ "vision_encoder.blocks.27.mlp.fc1.bias": "model-00002-of-00002.safetensors",
686
+ "vision_encoder.blocks.27.mlp.fc1.weight": "model-00002-of-00002.safetensors",
687
+ "vision_encoder.blocks.27.mlp.fc2.bias": "model-00002-of-00002.safetensors",
688
+ "vision_encoder.blocks.27.mlp.fc2.weight": "model-00002-of-00002.safetensors",
689
+ "vision_encoder.blocks.27.norm1.bias": "model-00002-of-00002.safetensors",
690
+ "vision_encoder.blocks.27.norm1.weight": "model-00002-of-00002.safetensors",
691
+ "vision_encoder.blocks.27.norm2.bias": "model-00002-of-00002.safetensors",
692
+ "vision_encoder.blocks.27.norm2.weight": "model-00002-of-00002.safetensors",
693
+ "vision_encoder.blocks.28.attn.proj.bias": "model-00002-of-00002.safetensors",
694
+ "vision_encoder.blocks.28.attn.proj.weight": "model-00002-of-00002.safetensors",
695
+ "vision_encoder.blocks.28.attn.qkv.bias": "model-00002-of-00002.safetensors",
696
+ "vision_encoder.blocks.28.attn.qkv.weight": "model-00002-of-00002.safetensors",
697
+ "vision_encoder.blocks.28.mlp.fc1.bias": "model-00002-of-00002.safetensors",
698
+ "vision_encoder.blocks.28.mlp.fc1.weight": "model-00002-of-00002.safetensors",
699
+ "vision_encoder.blocks.28.mlp.fc2.bias": "model-00002-of-00002.safetensors",
700
+ "vision_encoder.blocks.28.mlp.fc2.weight": "model-00002-of-00002.safetensors",
701
+ "vision_encoder.blocks.28.norm1.bias": "model-00002-of-00002.safetensors",
702
+ "vision_encoder.blocks.28.norm1.weight": "model-00002-of-00002.safetensors",
703
+ "vision_encoder.blocks.28.norm2.bias": "model-00002-of-00002.safetensors",
704
+ "vision_encoder.blocks.28.norm2.weight": "model-00002-of-00002.safetensors",
705
+ "vision_encoder.blocks.29.attn.proj.bias": "model-00002-of-00002.safetensors",
706
+ "vision_encoder.blocks.29.attn.proj.weight": "model-00002-of-00002.safetensors",
707
+ "vision_encoder.blocks.29.attn.qkv.bias": "model-00002-of-00002.safetensors",
708
+ "vision_encoder.blocks.29.attn.qkv.weight": "model-00002-of-00002.safetensors",
709
+ "vision_encoder.blocks.29.mlp.fc1.bias": "model-00002-of-00002.safetensors",
710
+ "vision_encoder.blocks.29.mlp.fc1.weight": "model-00002-of-00002.safetensors",
711
+ "vision_encoder.blocks.29.mlp.fc2.bias": "model-00002-of-00002.safetensors",
712
+ "vision_encoder.blocks.29.mlp.fc2.weight": "model-00002-of-00002.safetensors",
713
+ "vision_encoder.blocks.29.norm1.bias": "model-00002-of-00002.safetensors",
714
+ "vision_encoder.blocks.29.norm1.weight": "model-00002-of-00002.safetensors",
715
+ "vision_encoder.blocks.29.norm2.bias": "model-00002-of-00002.safetensors",
716
+ "vision_encoder.blocks.29.norm2.weight": "model-00002-of-00002.safetensors",
717
+ "vision_encoder.blocks.3.attn.proj.bias": "model-00002-of-00002.safetensors",
718
+ "vision_encoder.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
719
+ "vision_encoder.blocks.3.attn.qkv.bias": "model-00002-of-00002.safetensors",
720
+ "vision_encoder.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
721
+ "vision_encoder.blocks.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
722
+ "vision_encoder.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
723
+ "vision_encoder.blocks.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
724
+ "vision_encoder.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
725
+ "vision_encoder.blocks.3.norm1.bias": "model-00002-of-00002.safetensors",
726
+ "vision_encoder.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
727
+ "vision_encoder.blocks.3.norm2.bias": "model-00002-of-00002.safetensors",
728
+ "vision_encoder.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
729
+ "vision_encoder.blocks.30.attn.proj.bias": "model-00002-of-00002.safetensors",
730
+ "vision_encoder.blocks.30.attn.proj.weight": "model-00002-of-00002.safetensors",
731
+ "vision_encoder.blocks.30.attn.qkv.bias": "model-00002-of-00002.safetensors",
732
+ "vision_encoder.blocks.30.attn.qkv.weight": "model-00002-of-00002.safetensors",
733
+ "vision_encoder.blocks.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
734
+ "vision_encoder.blocks.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
735
+ "vision_encoder.blocks.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
736
+ "vision_encoder.blocks.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
737
+ "vision_encoder.blocks.30.norm1.bias": "model-00002-of-00002.safetensors",
738
+ "vision_encoder.blocks.30.norm1.weight": "model-00002-of-00002.safetensors",
739
+ "vision_encoder.blocks.30.norm2.bias": "model-00002-of-00002.safetensors",
740
+ "vision_encoder.blocks.30.norm2.weight": "model-00002-of-00002.safetensors",
741
+ "vision_encoder.blocks.31.attn.proj.bias": "model-00002-of-00002.safetensors",
742
+ "vision_encoder.blocks.31.attn.proj.weight": "model-00002-of-00002.safetensors",
743
+ "vision_encoder.blocks.31.attn.qkv.bias": "model-00002-of-00002.safetensors",
744
+ "vision_encoder.blocks.31.attn.qkv.weight": "model-00002-of-00002.safetensors",
745
+ "vision_encoder.blocks.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
746
+ "vision_encoder.blocks.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
747
+ "vision_encoder.blocks.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
748
+ "vision_encoder.blocks.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
749
+ "vision_encoder.blocks.31.norm1.bias": "model-00002-of-00002.safetensors",
750
+ "vision_encoder.blocks.31.norm1.weight": "model-00002-of-00002.safetensors",
751
+ "vision_encoder.blocks.31.norm2.bias": "model-00002-of-00002.safetensors",
752
+ "vision_encoder.blocks.31.norm2.weight": "model-00002-of-00002.safetensors",
753
+ "vision_encoder.blocks.4.attn.proj.bias": "model-00002-of-00002.safetensors",
754
+ "vision_encoder.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
755
+ "vision_encoder.blocks.4.attn.qkv.bias": "model-00002-of-00002.safetensors",
756
+ "vision_encoder.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
757
+ "vision_encoder.blocks.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
758
+ "vision_encoder.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
759
+ "vision_encoder.blocks.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
760
+ "vision_encoder.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
761
+ "vision_encoder.blocks.4.norm1.bias": "model-00002-of-00002.safetensors",
762
+ "vision_encoder.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
763
+ "vision_encoder.blocks.4.norm2.bias": "model-00002-of-00002.safetensors",
764
+ "vision_encoder.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
765
+ "vision_encoder.blocks.5.attn.proj.bias": "model-00002-of-00002.safetensors",
766
+ "vision_encoder.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
767
+ "vision_encoder.blocks.5.attn.qkv.bias": "model-00002-of-00002.safetensors",
768
+ "vision_encoder.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
769
+ "vision_encoder.blocks.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
770
+ "vision_encoder.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
771
+ "vision_encoder.blocks.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
772
+ "vision_encoder.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
773
+ "vision_encoder.blocks.5.norm1.bias": "model-00002-of-00002.safetensors",
774
+ "vision_encoder.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
775
+ "vision_encoder.blocks.5.norm2.bias": "model-00002-of-00002.safetensors",
776
+ "vision_encoder.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
777
+ "vision_encoder.blocks.6.attn.proj.bias": "model-00002-of-00002.safetensors",
778
+ "vision_encoder.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
779
+ "vision_encoder.blocks.6.attn.qkv.bias": "model-00002-of-00002.safetensors",
780
+ "vision_encoder.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
781
+ "vision_encoder.blocks.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
782
+ "vision_encoder.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
783
+ "vision_encoder.blocks.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
784
+ "vision_encoder.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
785
+ "vision_encoder.blocks.6.norm1.bias": "model-00002-of-00002.safetensors",
786
+ "vision_encoder.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
787
+ "vision_encoder.blocks.6.norm2.bias": "model-00002-of-00002.safetensors",
788
+ "vision_encoder.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
789
+ "vision_encoder.blocks.7.attn.proj.bias": "model-00002-of-00002.safetensors",
790
+ "vision_encoder.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
791
+ "vision_encoder.blocks.7.attn.qkv.bias": "model-00002-of-00002.safetensors",
792
+ "vision_encoder.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
793
+ "vision_encoder.blocks.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
794
+ "vision_encoder.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
795
+ "vision_encoder.blocks.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
796
+ "vision_encoder.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
797
+ "vision_encoder.blocks.7.norm1.bias": "model-00002-of-00002.safetensors",
798
+ "vision_encoder.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
799
+ "vision_encoder.blocks.7.norm2.bias": "model-00002-of-00002.safetensors",
800
+ "vision_encoder.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
801
+ "vision_encoder.blocks.8.attn.proj.bias": "model-00002-of-00002.safetensors",
802
+ "vision_encoder.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
803
+ "vision_encoder.blocks.8.attn.qkv.bias": "model-00002-of-00002.safetensors",
804
+ "vision_encoder.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
805
+ "vision_encoder.blocks.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
806
+ "vision_encoder.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
807
+ "vision_encoder.blocks.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
808
+ "vision_encoder.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
809
+ "vision_encoder.blocks.8.norm1.bias": "model-00002-of-00002.safetensors",
810
+ "vision_encoder.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
811
+ "vision_encoder.blocks.8.norm2.bias": "model-00002-of-00002.safetensors",
812
+ "vision_encoder.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
813
+ "vision_encoder.blocks.9.attn.proj.bias": "model-00002-of-00002.safetensors",
814
+ "vision_encoder.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
815
+ "vision_encoder.blocks.9.attn.qkv.bias": "model-00002-of-00002.safetensors",
816
+ "vision_encoder.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
817
+ "vision_encoder.blocks.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
818
+ "vision_encoder.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
819
+ "vision_encoder.blocks.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
820
+ "vision_encoder.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
821
+ "vision_encoder.blocks.9.norm1.bias": "model-00002-of-00002.safetensors",
822
+ "vision_encoder.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
823
+ "vision_encoder.blocks.9.norm2.bias": "model-00002-of-00002.safetensors",
824
+ "vision_encoder.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
825
+ "vision_encoder.merger.ln_q.bias": "model-00002-of-00002.safetensors",
826
+ "vision_encoder.merger.ln_q.weight": "model-00002-of-00002.safetensors",
827
+ "vision_encoder.merger.mlp.0.bias": "model-00002-of-00002.safetensors",
828
+ "vision_encoder.merger.mlp.0.weight": "model-00002-of-00002.safetensors",
829
+ "vision_encoder.merger.mlp.2.bias": "model-00002-of-00002.safetensors",
830
+ "vision_encoder.merger.mlp.2.weight": "model-00002-of-00002.safetensors",
831
+ "vision_encoder.patch_embed.proj.weight": "model-00002-of-00002.safetensors",
832
+ "vision_projector.ln_q.bias": "model-00002-of-00002.safetensors",
833
+ "vision_projector.ln_q.weight": "model-00002-of-00002.safetensors",
834
+ "vision_projector.mlp.0.bias": "model-00002-of-00002.safetensors",
835
+ "vision_projector.mlp.0.weight": "model-00002-of-00002.safetensors",
836
+ "vision_projector.mlp.2.bias": "model-00002-of-00002.safetensors",
837
+ "vision_projector.mlp.2.weight": "model-00002-of-00002.safetensors"
838
+ }
839
+ }
modeling_pointsv15_chat.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple
3
+
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ from transformers import (
8
+ GenerationMixin,
9
+ PreTrainedModel,
10
+ PreTrainedTokenizer,
11
+ Qwen2ForCausalLM,
12
+ )
13
+
14
+ try:
15
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import ( # noqa
16
+ Qwen2VLImageProcessor,
17
+ )
18
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import PatchMerger
19
+ except ImportError:
20
+ print('Please upgrade transformers to version 4.46.3 or higher')
21
+
22
+ from .configuration_pointsv15_chat import POINTSV15ChatConfig
23
+
24
+ try:
25
+ from wepoints.models import Qwen2VisionTransformerForNavitPOINTS
26
+ except ImportError:
27
+ print('Please install WePOINTS, and refer to https://github.com/WePOINTS/WePOINTS')
28
+
29
+
30
+ class POINTSV15ChatModel(PreTrainedModel, GenerationMixin):
31
+ config_class = POINTSV15ChatConfig
32
+ _no_split_modules = ["CustomLlamaLayer",
33
+ "Qwen2VisionTransformerPretrainedModel"]
34
+
35
+ """Chat model for POINTSv1.5.
36
+
37
+ Args:
38
+ config (POINTSChatConfigV15): The model config.
39
+ """
40
+
41
+ def __init__(self, config: POINTSV15ChatConfig) -> None:
42
+ super().__init__(config)
43
+ config.llm_config._attn_implementation = "flash_attention_2"
44
+ config._attn_implementation_autoset = False
45
+ self.llm = Qwen2ForCausalLM(config.llm_config)
46
+ self.vision_encoder = Qwen2VisionTransformerForNavitPOINTS._from_config( # noqa
47
+ config.vision_config, attn_implementation="flash_attention_2"
48
+ )
49
+ self.vision_projector = PatchMerger(config.llm_config.hidden_size,
50
+ context_dim=1280).to(torch.bfloat16)
51
+
52
+ def process_images(self, images: torch.Tensor,
53
+ image_grid_thws: List[list]) -> torch.Tensor:
54
+ """Obtain image features from the vision encoder.
55
+
56
+ Args:
57
+ images (torch.Tensor): The input images.
58
+ image_grid_thws (List[list]): The grid thresholds for the images.
59
+
60
+ Returns:
61
+ torch.Tensor: The image features.
62
+ """
63
+ image_features = self.vision_encoder(images, grid_thw=image_grid_thws)
64
+ image_features = self.vision_projector(image_features)
65
+ return image_features
66
+
67
+ def construct_prompt(self, messages: List[dict],
68
+ image_processor: Qwen2VLImageProcessor) -> Tuple[str, List[Image.Image], List[list]]: # noqa
69
+ """Construct the prompt for the chat model.
70
+
71
+ Args:
72
+ messages (List[dict]): The input messages.
73
+
74
+ Returns:
75
+ Tuple[str, List[Image.Image], List[list]]:
76
+ The prompt, images, and image grid shape.
77
+ """
78
+ images = []
79
+ image_grid_thws = []
80
+ reconstructed_messages = []
81
+ for message in messages:
82
+ role = message['role']
83
+ content_from_role = ''
84
+ for item in message['content']:
85
+ if item['type'] == 'text':
86
+ content_from_role += item['text']
87
+ elif item['type'] == 'image':
88
+ image_path = item['image']
89
+ max_pixels = item['max_pixels'] if 'max_pixels' in item else None
90
+ image = Image.open(image_path).convert('RGB')
91
+ if max_pixels is not None:
92
+ # obtain image size
93
+ width, height = image.size
94
+ cur_image_pixels = width * height
95
+ if cur_image_pixels > max_pixels:
96
+ beta = math.sqrt((height * width) / max_pixels)
97
+ new_width = math.floor(width / beta)
98
+ new_height = math.floor(height / beta)
99
+ image = image.resize((new_width, new_height))
100
+ image_data = image_processor(images=image)
101
+ pixel_values = image_data['pixel_values']
102
+ image_grid_thw = image_data['image_grid_thw']
103
+ images.extend(pixel_values)
104
+ image_grid_thws.append(image_grid_thw)
105
+ seq_len = int(image_grid_thw[0][1] * image_grid_thw[0][2] / 4) # noqa
106
+ content_from_role += '<|vision_start|>' + '<|image_pad|>' * seq_len + '<|vision_end|>' + '\n' # noqa
107
+ reconstructed_messages.append({
108
+ 'role': role,
109
+ 'content': content_from_role
110
+ })
111
+ prompt = self.apply_chat_template(reconstructed_messages)
112
+ return prompt, images, image_grid_thws
113
+
114
+ def apply_chat_template(self, messages: List[dict]) -> str:
115
+ """Apply the chat template to the input messages.
116
+
117
+ Args:
118
+ messages (List[dict]): The input messages.
119
+
120
+ Returns:
121
+ str: The prompt.
122
+ """
123
+ role_prefix_mapping = {
124
+ 'user': '<|im_start|>user\n',
125
+ 'assistant': '<|im_start|>assistant\n'
126
+ }
127
+ role = 'user'
128
+ prompt = ''
129
+ for message in messages:
130
+ role = message['role']
131
+ content = message['content']
132
+ prompt += role_prefix_mapping[role] + content + '<|im_end|>\n'
133
+ if role == 'user':
134
+ prompt += '<|im_start|>assistant\n'
135
+ return prompt
136
+
137
+ @torch.no_grad()
138
+ def chat(self,
139
+ messages: List[dict],
140
+ tokenizer: PreTrainedTokenizer,
141
+ image_processor: object,
142
+ generation_config: dict = None) -> str:
143
+ """Generate a response to the input prompt.
144
+
145
+ Args:
146
+ messages (List[dict]): The input messages.
147
+ tokenizer (PreTrainedTokenizer): The tokenizer to use.
148
+ image_processor (object): The image processor to use.
149
+ generation_config (dict, optional): The generation config.
150
+ Defaults to None.
151
+ Returns:
152
+ str: The generated response.
153
+ """
154
+ prompt, images, image_grid_thws = self.construct_prompt(
155
+ messages, image_processor
156
+ )
157
+ images = np.array(images)
158
+ images = torch.from_numpy(images).to(self.vision_encoder.device).to(self.vision_encoder.dtype) # noqa
159
+ image_grid_thws = np.concatenate(image_grid_thws, axis=0)
160
+ image_grid_thws = (
161
+ torch.from_numpy(image_grid_thws)
162
+ .cuda()
163
+ .long()
164
+ )
165
+ image_features = self.vision_encoder(images, grid_thw=image_grid_thws)
166
+ image_features = self.vision_projector(image_features.to(torch.bfloat16))
167
+ model_inputs = tokenizer(prompt, return_tensors='pt')
168
+ input_ids = model_inputs['input_ids'].to(self.device)
169
+ attention_mask = model_inputs['attention_mask'].to(self.device)
170
+ # stop token
171
+ eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
172
+ # image token
173
+ image_token_id = tokenizer.convert_tokens_to_ids("<|image_pad|>")
174
+ generation_config.update(
175
+ {
176
+ 'eos_token_id': eos_token_id,
177
+ }
178
+ )
179
+ outputs = self.generate(
180
+ input_ids=input_ids,
181
+ image_grid_thws=image_grid_thws,
182
+ attention_mask=attention_mask,
183
+ image_features=[image_features],
184
+ image_token_id=image_token_id,
185
+ **generation_config
186
+ )
187
+ response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
188
+ return response
189
+
190
+ def _split_input_ids(self, input_ids, special_token):
191
+ special_pos = input_ids == special_token
192
+ pos = (special_pos[:-1] != special_pos[1:]).nonzero() + 1
193
+ if pos.shape[0] % 2 != 0:
194
+ pos = torch.cat([torch.tensor([[0]]).to(pos.device), pos])
195
+ pos = pos.reshape(-1, 2).tolist()
196
+ return pos
197
+
198
+ def generate(self,
199
+ input_ids: torch.LongTensor,
200
+ image_grid_thws: torch.LongTensor,
201
+ attention_mask: torch.LongTensor,
202
+ image_features: List[torch.Tensor],
203
+ image_token_id: int,
204
+ generation_config: Optional[dict] = None,
205
+ output_hidden_states: Optional[bool] = None,
206
+ **generate_kwargs) -> torch.LongTensor:
207
+ input_embeddings = self.llm.model.embed_tokens(input_ids)
208
+ batch_size = input_ids.shape[0]
209
+ assert len(image_features) == batch_size
210
+ for i in range(batch_size):
211
+ pos = self._split_input_ids(input_ids[i], image_token_id)
212
+ assert len(pos) == len(image_grid_thws)
213
+ image_pos = [
214
+ int(image_grid_thw[1] * image_grid_thw[2] / 4)
215
+ for image_grid_thw in image_grid_thws
216
+ ]
217
+ image_pos.insert(0, 0)
218
+ image_pos = np.cumsum(image_pos)
219
+ for j, (start, end) in enumerate(pos):
220
+ input_embeddings[i, start:end] = \
221
+ image_features[i][image_pos[j]:image_pos[j+1]]
222
+ outputs = self.llm.generate(
223
+ inputs_embeds=input_embeddings,
224
+ attention_mask=attention_mask,
225
+ generation_config=generation_config,
226
+ output_hidden_states=output_hidden_states,
227
+ use_cache=True,
228
+ **generate_kwargs
229
+ )
230
+ return outputs
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "resample": 3,
22
+ "rescale_factor": 0.00392156862745098,
23
+ "size": {
24
+ "max_pixels": 12845056,
25
+ "min_pixels": 3136
26
+ },
27
+ "temporal_patch_size": 2,
28
+ "processor_class": "Qwen2VLProcessor"
29
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff