terrencewee12 commited on
Commit
8b2083b
·
verified ·
1 Parent(s): dc27d02

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -1,6 +1,9 @@
 
1
  ---
2
  language:
 
3
  - ms
 
4
  tags:
5
  - sentiment-analysis
6
  - text-classification
@@ -8,6 +11,8 @@ tags:
8
  license: apache-2.0
9
  datasets:
10
  - tyqiangz/multilingual-sentiments
 
 
11
  metrics:
12
  - accuracy
13
  model-index:
@@ -16,15 +21,10 @@ model-index:
16
  - task:
17
  type: text-classification
18
  name: Text Classification
19
- dataset:
20
- chinese: scfengv/TVL_Sentiment_Analysis
21
- malay : tyqiangz/multilingual-sentiments", "malay"
22
- english: "argilla/twitter-coronavirus"
23
-
24
  metrics:
25
  - type: accuracy
26
- value: 0.7841
27
-
28
  # xlm-roberta-base-sentiment-multilingual-finetuned
29
 
30
  ## Model description
@@ -33,11 +33,11 @@ This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentime
33
 
34
  ## Intended uses & limitations
35
 
36
- This model is intended for sentiment analysis tasks in Malay. It can classify text into three sentiment categories: positive, negative, and neutral.
37
 
38
  ## Training and evaluation data
39
 
40
- The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset.
41
 
42
  ## Training procedure
43
 
@@ -59,10 +59,9 @@ training_args = TrainingArguments(
59
 
60
  ## Evaluation results
61
 
62
- Test results: {'eval_loss': 0.5505692958831787, 'eval_accuracy': 0.7840796019900498, 'eval_f1': 0.7831398165701241, 'eval_precision': 0.7831755325873082, 'eval_recall': 0.7840796019900498, 'eval_runtime': 4.2769, 'eval_samples_per_second': 234.982, 'eval_steps_per_second': 3.741, 'epoch': 2.0}
63
 
64
  ## Environmental impact
65
 
66
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
67
 
68
-
 
1
+
2
  ---
3
  language:
4
+ - en
5
  - ms
6
+ - zh
7
  tags:
8
  - sentiment-analysis
9
  - text-classification
 
11
  license: apache-2.0
12
  datasets:
13
  - tyqiangz/multilingual-sentiments
14
+ - scfengv/TVL_Sentiment_Analysis
15
+ - argilla/twitter-coronavirus
16
  metrics:
17
  - accuracy
18
  model-index:
 
21
  - task:
22
  type: text-classification
23
  name: Text Classification
 
 
 
 
 
24
  metrics:
25
  - type: accuracy
26
+ value: 0.8444
27
+ ---
28
  # xlm-roberta-base-sentiment-multilingual-finetuned
29
 
30
  ## Model description
 
33
 
34
  ## Intended uses & limitations
35
 
36
+ This model is intended for sentiment analysis tasks in English, Malay, and Chinese. It can classify text into three sentiment categories: positive, negative, and neutral.
37
 
38
  ## Training and evaluation data
39
 
40
+ The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments)[TVL_Sentiment_Analysis](https://huggingface.co/datasets/scfengv/TVL_Sentiment_Analysis) , [argilla/twitter-coronavirus](https://huggingface.co/datasets/argilla/twitter-coronavirus) datasets, which includes data in English, Malay, and Chinese.
41
 
42
  ## Training procedure
43
 
 
59
 
60
  ## Evaluation results
61
 
62
+ Test results: {'eval_loss': 0.5881872177124023, 'eval_accuracy': 0.8443683409436834, 'eval_f1': 0.8438625655671501, 'eval_precision': 0.8438352235376211, 'eval_recall': 0.8443683409436834}
63
 
64
  ## Environmental impact
65
 
66
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
67