Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,6 +1,9 @@
|
|
|
|
1 |
---
|
2 |
language:
|
|
|
3 |
- ms
|
|
|
4 |
tags:
|
5 |
- sentiment-analysis
|
6 |
- text-classification
|
@@ -8,6 +11,8 @@ tags:
|
|
8 |
license: apache-2.0
|
9 |
datasets:
|
10 |
- tyqiangz/multilingual-sentiments
|
|
|
|
|
11 |
metrics:
|
12 |
- accuracy
|
13 |
model-index:
|
@@ -16,15 +21,10 @@ model-index:
|
|
16 |
- task:
|
17 |
type: text-classification
|
18 |
name: Text Classification
|
19 |
-
dataset:
|
20 |
-
chinese: scfengv/TVL_Sentiment_Analysis
|
21 |
-
malay : tyqiangz/multilingual-sentiments", "malay"
|
22 |
-
english: "argilla/twitter-coronavirus"
|
23 |
-
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
-
value:
|
27 |
-
|
28 |
# xlm-roberta-base-sentiment-multilingual-finetuned
|
29 |
|
30 |
## Model description
|
@@ -33,11 +33,11 @@ This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentime
|
|
33 |
|
34 |
## Intended uses & limitations
|
35 |
|
36 |
-
This model is intended for sentiment analysis tasks in Malay. It can classify text into three sentiment categories: positive, negative, and neutral.
|
37 |
|
38 |
## Training and evaluation data
|
39 |
|
40 |
-
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments)
|
41 |
|
42 |
## Training procedure
|
43 |
|
@@ -59,10 +59,9 @@ training_args = TrainingArguments(
|
|
59 |
|
60 |
## Evaluation results
|
61 |
|
62 |
-
Test results: {'eval_loss': 0.
|
63 |
|
64 |
## Environmental impact
|
65 |
|
66 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
67 |
|
68 |
-
|
|
|
1 |
+
|
2 |
---
|
3 |
language:
|
4 |
+
- en
|
5 |
- ms
|
6 |
+
- zh
|
7 |
tags:
|
8 |
- sentiment-analysis
|
9 |
- text-classification
|
|
|
11 |
license: apache-2.0
|
12 |
datasets:
|
13 |
- tyqiangz/multilingual-sentiments
|
14 |
+
- scfengv/TVL_Sentiment_Analysis
|
15 |
+
- argilla/twitter-coronavirus
|
16 |
metrics:
|
17 |
- accuracy
|
18 |
model-index:
|
|
|
21 |
- task:
|
22 |
type: text-classification
|
23 |
name: Text Classification
|
|
|
|
|
|
|
|
|
|
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
+
value: 0.8444
|
27 |
+
---
|
28 |
# xlm-roberta-base-sentiment-multilingual-finetuned
|
29 |
|
30 |
## Model description
|
|
|
33 |
|
34 |
## Intended uses & limitations
|
35 |
|
36 |
+
This model is intended for sentiment analysis tasks in English, Malay, and Chinese. It can classify text into three sentiment categories: positive, negative, and neutral.
|
37 |
|
38 |
## Training and evaluation data
|
39 |
|
40 |
+
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments)[TVL_Sentiment_Analysis](https://huggingface.co/datasets/scfengv/TVL_Sentiment_Analysis) , [argilla/twitter-coronavirus](https://huggingface.co/datasets/argilla/twitter-coronavirus) datasets, which includes data in English, Malay, and Chinese.
|
41 |
|
42 |
## Training procedure
|
43 |
|
|
|
59 |
|
60 |
## Evaluation results
|
61 |
|
62 |
+
Test results: {'eval_loss': 0.5881872177124023, 'eval_accuracy': 0.8443683409436834, 'eval_f1': 0.8438625655671501, 'eval_precision': 0.8438352235376211, 'eval_recall': 0.8443683409436834}
|
63 |
|
64 |
## Environmental impact
|
65 |
|
66 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
67 |
|
|