tgrhn commited on
Commit
7e1d287
·
verified ·
1 Parent(s): 19d967d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ base_model:
5
+ - artiwise-ai/modernbert-base-tr-uncased
6
+ pipeline_tag: text-classification
7
+ library_name: transformers
8
+ license: mit
9
+ tags:
10
+ - generated_from_trainer
11
+ metrics:
12
+ - accuracy
13
+ - precision
14
+ - recall
15
+ - f1
16
+ model-index:
17
+ - name: ModernBERT-Sentiment-Classifier
18
+ results: []
19
+ ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+ # ModernBERT-Turkish-Sentiment-Classifier
25
+
26
+ This model is a fine-tuned version of artiwise-ai/modernbert-base-tr-uncased on a Fake News Detection dataset, which is constructed by combining various publicly available datasets, incorporating additional resources curated by me, and translating English-language data into Turkish using large language models.
27
+ It achieves the following results on the evaluation set:
28
+ - Loss: 0.280550
29
+ - Accuracy: 0.956000
30
+ - Precision: 0.956370
31
+ - Recall: 0.956000
32
+ - F1: 0.956175
33
+
34
+ ## Training and evaluation data
35
+
36
+ The data cannot be shared.
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 3
50
+
51
+ ### Training results
52
+
53
+ Epoch Training Loss Validation Loss Accuracy Precision Recall F1
54
+ 1 0.161400 0.163402 0.945000 0.945220 0.945000 0.945107
55
+ 2 0.034400 0.286277 0.942000 0.949040 0.942000 0.944231
56
+ 3 0.003100 0.280550 0.956000 0.956370 0.956000 0.95617
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.52.2
62
+ - Pytorch 2.6.0+cu124
63
+ - Datasets 2.14.4
64
+ - Tokenizers 0.21.1
65
+