File size: 11,577 Bytes
430712c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#!/usr/bin/python
#-*- coding: utf-8 -*-
import sys, time, os, argparse, socket
import yaml
import numpy
import pdb
import torch
import glob
import zipfile
import csv
import warnings
import datetime
from tuneThreshold import *
from SpeakerNet import *
from DatasetLoader import *
import torch.distributed as dist
import torch.multiprocessing as mp
## ===== ===== ===== ===== ===== ===== ===== =====
## Parse arguments
## ===== ===== ===== ===== ===== ===== ===== =====
# os.environ['CUDA_VISIBLE_DEVICES']='0'
parser = argparse.ArgumentParser(description = "SpeakerNet");
parser.add_argument('--config', type=str, default=None, help='Config YAML file');
## Data loader
parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
parser.add_argument('--augment', type=bool, default=True, help='Augment input')
parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
## Training details
parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
## Optimizer
parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
## Pre-trained Transformer Model
parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
## Loss functions
parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
## Evaluation parameters
parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
## Load and save
parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
## Training and test data
parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
## Model definition
parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
parser.add_argument('--model', type=str, default="", help='Name of model definition');
parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
## For test only
parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
parser.add_argument('--generate_embeddings', dest='generate_embeddings', action='store_true', help='Generate embeddings for the train set')
parser.add_argument('--embeddings_path', type=str, default="")
parser.add_argument('--generate_pseudo_labels', dest='generate_pseudo_labels', action='store_true', help='Generate pseudo labels for the train set')
## Distributed and mixed precision training
parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
args = parser.parse_args();
## Parse YAML
def find_option_type(key, parser):
for opt in parser._get_optional_actions():
if ('--' + key) in opt.option_strings:
return opt.type
raise ValueError
if args.config is not None:
with open(args.config, "r") as f:
yml_config = yaml.load(f, Loader=yaml.FullLoader)
for k, v in yml_config.items():
if k in args.__dict__:
typ = find_option_type(k, parser)
args.__dict__[k] = typ(v)
else:
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
## Try to import NSML
try:
import nsml
from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
from nsml import NSML_NFS_OUTPUT, SESSION_NAME
except:
pass;
warnings.simplefilter("ignore")
## ===== ===== ===== ===== ===== ===== ===== =====
## Trainer script
## ===== ===== ===== ===== ===== ===== ===== =====
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
## Load models
s = SpeakerNet(**vars(args));
s = WrappedModel(s).cuda(args.gpu)
it = 1
eers = [100];
# trainLoader = get_data_loader(args.train_list, **vars(args));
trainer = ModelTrainer(s, **vars(args))
## Load model weights
modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
modelfiles.sort()
if(args.initial_model != ""):
trainer.loadParameters(args.initial_model);
print("Model {} loaded!".format(args.initial_model));
elif len(modelfiles) >= 1:
# print("Model {} loaded from previous state!".format(modelfiles[-2]));
# trainer.loadParameters(modelfiles[-2]);
it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
for ii in range(1,it):
trainer.__scheduler__.step()
# pytorch_total_params = sum(p.numel() for p in s.module.__S__.model.feature_extractor.parameters())
pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
print('Total parameters: ',pytorch_total_params)
# quit();
## Evaluation code - must run on single GPU
if args.eval == True:
scorefile_score = open(args.result_save_path+"/Eval_scores_mean_O_All.txt", "w");
print('Test list',args.test_list)
for i in range(1,15):
print("Model {} loaded from previous state!".format(modelfiles[-i]));
trainer.loadParameters(modelfiles[-i]);
# trainer.loadParameters(modelfiles[0]);
# sc, lab, _,sc1,sc2 = trainer.evaluateFromList_1utterance(**vars(args))
sc, lab, _,sc1,sc2 = trainer.evaluateFromList(**vars(args))
if args.gpu == 0:
result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
result1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
result2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
mindcf_1, threshold_1 = ComputeMinDcf(fnrs, fprs, thresholds, 0.01, args.dcf_c_miss, args.dcf_c_fa)
print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]),"MinDCF05 {:2.5f}".format(mindcf), "MinDCF01 {:2.5f}".format(mindcf_1));
scorefile_score.write("Epoch {}, VEER {:2.4f}, VEER_S1 {:2.4f}, VEER_S2 {:2.4f}, MinDCF05 {:2.5f}, MinDCF01 {:2.5f}\n".format(modelfiles[-i], result[1], result1[1], result2[1], mindcf,mindcf_1));
scorefile_score.flush()
scorefile_score.close()
return
if args.generate_embeddings == True:
print('Generate embeddings for the train set')
wav_list_file = args.train_list
with open(wav_list_file,'r') as f:
wav_files = [args.train_path + '/' + line.strip().split()[1] for line in f.readlines()]
print("Model {} loaded from previous state!".format(modelfiles[-1]));
trainer.loadParameters(modelfiles[-1]);
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
trainer.generate_embeddings(wav_files, args.embeddings_path, device)
## ===== ===== ===== ===== ===== ===== ===== =====
## Main function
## ===== ===== ===== ===== ===== ===== ===== =====
def main():
if ("nsml" in sys.modules) and not args.eval:
args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
args.model_save_path = args.save_path+"/model"
args.result_save_path = args.save_path+"/result"
args.feat_save_path = ""
os.makedirs(args.model_save_path, exist_ok=True)
os.makedirs(args.result_save_path, exist_ok=True)
n_gpus = torch.cuda.device_count()
print('Python Version:', sys.version)
print('PyTorch Version:', torch.__version__)
print('Number of GPUs:', torch.cuda.device_count())
print('Save path:',args.save_path)
if args.distributed:
mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
else:
main_worker(0, None, args)
if __name__ == '__main__':
main()
|