Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,80 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
[
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Replete-AI/code_bagel
|
5 |
---
|
6 |
+
# Chatty-McChatterson-3-mini-128k
|
7 |
|
8 |
+

|
|
|
|
|
|
|
|
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
+
**Model Name:** Chatty-McChatterson-3-mini-128k
|
13 |
+
**Base Model:** [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
|
14 |
+
**Fine-tuning Method:** Supervised Fine-Tuning (SFT)
|
15 |
+
**Dataset:** [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
|
16 |
+
**Training Data:** 12884 conversations selected for being 512 input tokens or less
|
17 |
+
**Training Duration:** 4 hours
|
18 |
+
**Hardware:** Nvidia RTX A4500
|
19 |
+
**Epochs:** 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
## Training Procedure
|
22 |
|
23 |
+
This model was fine-tuned to provide better instructions on code.
|
24 |
|
25 |
+
The training was conducted using PEFT and SFTTrainer on select conversations from the Ultra Chat 200k dataset.
|
26 |
+
Training was completed in 3 epochs (19326 steps) over a span of 4 hours on an Nvidia A4500 GPU.
|
27 |
|
28 |
+
The dataset comprised of a filterd list of rows from the [Ultra Chat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset, where the prompt template was 512 tokens or less.
|
29 |
|
30 |
+
## Intended Use
|
31 |
|
32 |
+
This model is designed to improve the overall chat experience and response quality.
|
33 |
|
34 |
+
## Getting Started
|
35 |
|
36 |
+
## Instruct Template
|
37 |
+
```bash
|
38 |
+
<|system|>
|
39 |
+
{system_message} <|end|>
|
40 |
+
<|user|>
|
41 |
+
{Prompt) <|end|>
|
42 |
+
<|assistant|>
|
43 |
+
```
|
44 |
|
45 |
+
### Transfromers
|
46 |
|
47 |
+
```python
|
48 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
49 |
|
50 |
+
model_name_or_path = "thesven/Chatty-McChatterson-3-mini-128k"
|
51 |
|
52 |
+
# BitsAndBytesConfig for loading the model in 4-bit precision
|
53 |
+
bnb_config = BitsAndBytesConfig(
|
54 |
+
load_in_4bit=True,
|
55 |
+
bnb_4bit_quant_type="nf4",
|
56 |
+
bnb_4bit_compute_dtype="float16",
|
57 |
+
)
|
58 |
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
61 |
+
model_name_or_path,
|
62 |
+
device_map="auto",
|
63 |
+
trust_remote_code=False,
|
64 |
+
revision="main",
|
65 |
+
quantization_config=bnb_config
|
66 |
+
)
|
67 |
+
model.pad_token = model.config.eos_token_id
|
68 |
|
69 |
+
prompt_template = '''
|
70 |
+
<|user|>
|
71 |
+
What is the name of the big tower in Toronto?.<|end|>
|
72 |
+
<|assistant|>
|
73 |
+
'''
|
74 |
|
75 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
76 |
+
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256)
|
77 |
|
78 |
+
generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True)
|
79 |
+
print(generated_text)
|
80 |
+
```
|