--- library_name: transformers tags: - colpali - mlx license: apache-2.0 datasets: - vidore/colpali_train_set language: - en base_model: - vidore/colqwen2-base pipeline_tag: visual-document-retrieval --- # thoddnn/colqwen2-v1.0-mlx The Model [thoddnn/colqwen2-v1.0-mlx](https://huggingface.co/thoddnn/colqwen2-v1.0-mlx) was converted to MLX format from [vidore/colqwen2-v1.0-hf](https://huggingface.co/vidore/colqwen2-v1.0-hf) using mlx-lm version **0.0.3**. ## Use with mlx ```bash pip install mlx-embeddings ``` ```python from mlx_embeddings import load, generate import mlx.core as mx model, tokenizer = load("thoddnn/colqwen2-v1.0-mlx") # For text embeddings output = generate(model, processor, texts=["I like grapes", "I like fruits"]) embeddings = output.text_embeds # Normalized embeddings # Compute dot product between normalized embeddings similarity_matrix = mx.matmul(embeddings, embeddings.T) print("Similarity matrix between texts:") print(similarity_matrix) ```