--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - swiss-ai/Apertus-70B-Instruct-2509 --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [swiss-ai/Apertus-70B-Instruct-2509](https://huggingface.co/swiss-ai/Apertus-70B-Instruct-2509). ### Example usage: - vLLM ```bash vllm serve tiny-random/apertus ``` - Transformers ```python import os import re import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "tiny-random/apertus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "user", "content": "How to make pasta?"}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128) output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "swiss-ai/Apertus-70B-Instruct-2509" save_folder = "/tmp/tiny-random/apertus" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['head_dim'] = 32 # vllm requirement config_json['intermediate_size'] = 32 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 # better support tensor parallel config_json['tie_word_embeddings'] = False with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text ApertusForCausalLM( (model): ApertusModel( (embed_tokens): Embedding(131072, 8, padding_idx=3) (layers): ModuleList( (0-1): 2 x ApertusDecoderLayer( (self_attn): ApertusAttention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): ApertusRMSNorm((32,), eps=1e-05) (k_norm): ApertusRMSNorm((32,), eps=1e-05) ) (mlp): ApertusMLP( (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): XIELUActivation() ) (attention_layernorm): ApertusRMSNorm((8,), eps=1e-05) (feedforward_layernorm): ApertusRMSNorm((8,), eps=1e-05) ) ) (norm): ApertusRMSNorm((8,), eps=1e-05) (rotary_emb): ApertusRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=131072, bias=False) ) ```