File size: 7,680 Bytes
93c8028 1bec50b 93c8028 1bec50b 93c8028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- moonshotai/Kimi-K2-Instruct
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [moonshotai/Kimi-K2-Instruct](https://huggingface.co/moonshotai/Kimi-K2-Instruct).
### Example usage:
- vLLM
```bash
vllm serve tiny-random/kimi-k2 --trust-remote-code
```
- Transformers
```python
import torch
import transformers
model_id = "tiny-random/kimi-k2"
pipe = transformers.pipelines.pipeline(
'text-generation',
model=model_id,
trust_remote_code=True,
device_map='cuda',
torch_dtype=torch.bfloat16,
)
messages = [
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
{"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]},
]
print(pipe(messages, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95))
```
### Codes to create this repo:
```python
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
set_seed,
)
source_model_id = "moonshotai/Kimi-K2-Instruct"
save_folder = "/tmp/tiny-random/kimi-k2"
Path(save_folder).mkdir(parents=True, exist_ok=True)
with open(hf_hub_download(source_model_id, filename='tokenizer_config.json', repo_type='model'), 'r', encoding='utf-8') as f:
tokenizer_config_json = json.load(f)
tokenizer_config_json['auto_map']['AutoTokenizer'][0] = f'{source_model_id}--' + \
tokenizer_config_json["auto_map"]["AutoTokenizer"][0]
with open(f"{save_folder}/tokenizer_config.json", "w", encoding='utf-8') as f:
json.dump(tokenizer_config_json, f, indent=2)
hf_hub_download(source_model_id, filename='tiktoken.model', repo_type='model',
local_dir=save_folder, local_dir_use_symlinks=True, cache_dir='/tmp/')
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
for k, v in config_json['auto_map'].items():
config_json['auto_map'][k] = f'{source_model_id}--{v}'
config_json.update({
'first_k_dense_replace': 1,
'num_hidden_layers': 2,
'hidden_size': 32,
'intermediate_size': 64,
'kv_lora_rank': 384,
'moe_intermediate_size': 64,
'n_routed_experts': 32,
'n_shared_experts': 1,
'num_attention_heads': 1,
'num_experts_per_tok': 8,
'num_key_value_heads': 1,
'q_lora_rank': 32,
'qk_nope_head_dim': 64,
'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256
'v_head_dim': 64,
'tie_word_embeddings': False,
})
config_json['rope_scaling']['rope_type'] = 'yarn'
del config_json['quantization_config']
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.2)
print(name, p.shape)
model.save_pretrained(save_folder)
# print(model)
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
config_json = json.load(f)
config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()}
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
# for python_file in Path(save_folder).glob('*.py'):
# python_file.unlink()
with open(f'{save_folder}/modeling_deepseek.py', 'r', encoding='utf-8') as f:
codes = f.read()
codes = codes.replace(
"past_length = past_key_values.seen_tokens",
"past_length = past_key_values.seen_tokens if hasattr(past_key_values, 'seen_tokens') else past_key_values.get_seq_length() # fix cache api deprecation"
)
codes = codes.replace(
"max_cache_length = past_key_values.get_max_length()",
"max_cache_length = past_key_values.get_max_length() if hasattr(past_key_values, 'get_max_length') else past_key_values.get_max_cache_shape() # fix cache api deprecation"
)
with open(f'{save_folder}/modeling_deepseek.py', 'w', encoding='utf-8') as f:
f.write(codes)
```
### Printing the model:
```text
DeepseekV3ForCausalLM(
(model): DeepseekV3Model(
(embed_tokens): Embedding(163840, 32)
(layers): ModuleList(
(0): DeepseekV3DecoderLayer(
(self_attn): DeepseekV3Attention(
(q_a_proj): Linear(in_features=32, out_features=32, bias=False)
(q_a_layernorm): DeepseekV3RMSNorm()
(q_b_proj): Linear(in_features=32, out_features=256, bias=False)
(kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False)
(kv_a_layernorm): DeepseekV3RMSNorm()
(kv_b_proj): Linear(in_features=384, out_features=128, bias=False)
(o_proj): Linear(in_features=64, out_features=32, bias=False)
(rotary_emb): DeepseekV3YarnRotaryEmbedding()
)
(mlp): DeepseekV3MLP(
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
(up_proj): Linear(in_features=32, out_features=64, bias=False)
(down_proj): Linear(in_features=64, out_features=32, bias=False)
(act_fn): SiLU()
)
(input_layernorm): DeepseekV3RMSNorm()
(post_attention_layernorm): DeepseekV3RMSNorm()
)
(1): DeepseekV3DecoderLayer(
(self_attn): DeepseekV3Attention(
(q_a_proj): Linear(in_features=32, out_features=32, bias=False)
(q_a_layernorm): DeepseekV3RMSNorm()
(q_b_proj): Linear(in_features=32, out_features=256, bias=False)
(kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False)
(kv_a_layernorm): DeepseekV3RMSNorm()
(kv_b_proj): Linear(in_features=384, out_features=128, bias=False)
(o_proj): Linear(in_features=64, out_features=32, bias=False)
(rotary_emb): DeepseekV3YarnRotaryEmbedding()
)
(mlp): DeepseekV3MoE(
(experts): ModuleList(
(0-31): 32 x DeepseekV3MLP(
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
(up_proj): Linear(in_features=32, out_features=64, bias=False)
(down_proj): Linear(in_features=64, out_features=32, bias=False)
(act_fn): SiLU()
)
)
(gate): MoEGate()
(shared_experts): DeepseekV3MLP(
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
(up_proj): Linear(in_features=32, out_features=64, bias=False)
(down_proj): Linear(in_features=64, out_features=32, bias=False)
(act_fn): SiLU()
)
)
(input_layernorm): DeepseekV3RMSNorm()
(post_attention_layernorm): DeepseekV3RMSNorm()
)
)
(norm): DeepseekV3RMSNorm()
)
(lm_head): Linear(in_features=32, out_features=163840, bias=False)
)
``` |