--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - stepfun-ai/step3 --- This tiny model is for debugging. It is randomly initialized with the config adapted from [stepfun-ai/step3](https://huggingface.co/stepfun-ai/step3). Note: if you want the model version that follows transformers' naming, see the model without "-vllm" suffix. ### Example usage: - vLLM ```bash vllm serve tiny-random/step3-vllm --trust-remote-code ``` - Transformers ```python # ⚠️: it's more convenient to use the model without "-vllm" suffix, # which follows transformers' naming. Here "key_mapping" is a workaround. import torch from transformers import AutoModelForCausalLM, AutoProcessor model_id = "tiny-random/step3-vllm" key_mapping = { "^vision_model": "model.vision_model", r"^model(?!\.(language_model|vision_model))": "model.language_model", "vit_downsampler": "model.vit_downsampler", "vit_downsampler2": "model.vit_downsampler2", "vit_large_projector": "model.vit_large_projector", } processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, key_mapping=key_mapping, ) messages = [ { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "text", "text": "What's in this picture?"} ] }, ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(model.device) generate_ids = model.generate(**inputs, max_new_tokens=32, do_sample=False) decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=False) print(decoded) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "stepfun-ai/step3" save_folder = "/tmp/tiny-random/step3-vllm" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) def rewrite_automap(filepath: str, source_model_id: str, overrides: dict = None): import json with open(filepath, 'r', encoding='utf-8') as f: config = json.load(f) for k, v in config['auto_map'].items(): v = v.split('--')[-1] config['auto_map'][k] = f'{source_model_id}--{v}' if overrides is not None: config.update(overrides) with open(filepath, 'w', encoding='utf - 8') as f: json.dump(config, f, indent=2) rewrite_automap(f'{save_folder}/processor_config.json', source_model_id) rewrite_automap(f'{save_folder}/tokenizer_config.json', source_model_id) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['architectures'] = ["Step3VLForConditionalGeneration"] config_json['text_config'].update({ "hidden_size": 32, "intermediate_size": 64, "num_hidden_layers": 2, "num_attention_heads": 2, "num_attention_groups": 1, "head_dim": 256, "share_q_dim": 512, "moe_layers_enum": "1", "moe_num_experts": 8, "moe_top_k": 3, "moe_intermediate_size": 64, "share_expert_dim": 64, "tie_word_embeddings": True, }) config_json['vision_config'].update({ "hidden_size": 64, "output_hidden_size": 64, "intermediate_size": 128, "num_hidden_layers": 2, "num_attention_heads": 2 }) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) automap = config_json['auto_map'] torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) import safetensors new_tensors = {} with safetensors.safe_open(f'{save_folder}/model.safetensors', framework='pt', device='cpu') as f: for k in list(f.keys()): v = f.get_tensor(k) if k.startswith('model.language_model.'): k = k.replace('model.language_model.', 'model.') new_tensors[k] = v elif k.startswith('model.vi'): k = k.replace('model.vi', 'vi') new_tensors[k] = v else: new_tensors[k] = v safetensors.torch.save_file(new_tensors, f"{save_folder}/model.safetensors") rewrite_automap( f'{save_folder}/config.json', source_model_id, overrides=dict(architectures=['Step3VLForConditionalGeneration']), ) for python_file in Path(save_folder).glob('*.py'): if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_') or python_file.name.endswith('.py'): python_file.unlink() ``` ### Printing the model: ```text Step3vForConditionalGeneration( (model): Step3vModel( (vision_model): StepCLIPVisionTransformer( (embeddings): StepCLIPVisionEmbeddings( (patch_embedding): Conv2d(3, 64, kernel_size=(14, 14), stride=(14, 14)) (position_embedding): Embedding(2705, 64) ) (transformer): StepCLIPEncoder( (layers): ModuleList( (0-1): 2 x StepCLIPEncoderLayer( (layer_norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (layer_norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (self_attn): StepCLIPAttention( (qkv_proj): Linear(in_features=64, out_features=192, bias=True) (out_proj): Linear(in_features=64, out_features=64, bias=True) ) (mlp): StepCLIPMLP( (fc1): Linear(in_features=64, out_features=128, bias=True) (act): QuickGELUActivation() (fc2): Linear(in_features=128, out_features=64, bias=True) ) ) ) ) ) (language_model): Step3Model( (embed_tokens): Embedding(128815, 32) (layers): ModuleList( (0): Step3vDecoderLayer( (self_attn): Step3vAttention( (q_proj): Linear(in_features=32, out_features=512, bias=False) (k_proj): Linear(in_features=32, out_features=256, bias=False) (v_proj): Linear(in_features=32, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=32, bias=False) (inter_norm): Step3vRMSNorm((512,), eps=1e-05) (wq): Linear(in_features=512, out_features=512, bias=False) ) (mlp): Step3vMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) (input_layernorm): Step3vRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05) ) (1): Step3vDecoderLayer( (self_attn): Step3vAttention( (q_proj): Linear(in_features=32, out_features=512, bias=False) (k_proj): Linear(in_features=32, out_features=256, bias=False) (v_proj): Linear(in_features=32, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=32, bias=False) (inter_norm): Step3vRMSNorm((512,), eps=1e-05) (wq): Linear(in_features=512, out_features=512, bias=False) ) (moe): Step3vMoEMLP( (gate): Linear(in_features=32, out_features=8, bias=False) (up_proj): MoELinear() (gate_proj): MoELinear() (down_proj): MoELinear() (act_fn): SiLU() ) (share_expert): Step3vMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) (input_layernorm): Step3vRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05) ) ) (norm): Step3vRMSNorm((32,), eps=1e-05) (rotary_emb): Step3vRotaryEmbedding() ) (vit_downsampler): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2)) (vit_downsampler2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (vit_large_projector): Linear(in_features=128, out_features=32, bias=False) ) (lm_head): Linear(in_features=32, out_features=128815, bias=False) ) ```