Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +133 -0
- stfm.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
stfm.pth filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images
|
2 |
+
|
3 |
+
This is a Huggingface repo for the paper:
|
4 |
+
|
5 |
+
> Tinglin Huang, Tianyu Liu, Mehrtash Babadi, Rex Ying, and Wengong Jin (2025). STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images. Paper in [bioRxiv](https://www.biorxiv.org/content/10.1101/2025.04.19.649665v2.abstract). Code in [GitHub](https://github.com/Graph-and-Geometric-Learning/STPath).
|
6 |
+
|
7 |
+
|
8 |
+
## Usage
|
9 |
+
|
10 |
+
We provide an easy-to-use interface for users to perform inference on the pre-trained model, which can be found in `app/pipeline/inference.py`. Specifically, the following code snippet shows how to use it:
|
11 |
+
|
12 |
+
```python
|
13 |
+
from stpath.app.pipeline.inference import STPathInference
|
14 |
+
|
15 |
+
agent = STPathInference(
|
16 |
+
gene_voc_path='STPath_dir/utils_data/symbol2ensembl.json',
|
17 |
+
model_weight_path='your_dir/stpath.pkl',
|
18 |
+
device=0
|
19 |
+
)
|
20 |
+
|
21 |
+
pred_adata = agent.inference(
|
22 |
+
coords=coords, # [number_of_spots, 2]
|
23 |
+
img_features=embeddings, # [number_of_spots, 1536], the image features extracted using Gigapath
|
24 |
+
organ_type="Kidney", # Default is None
|
25 |
+
tech_type="Visium", # Default is None
|
26 |
+
save_gene_names=hvg_list # a list of gene names to save in the adata, e.g., ['GATA3', 'UBLE2C', ...]. None will save all genes in the model.
|
27 |
+
)
|
28 |
+
|
29 |
+
# save adata
|
30 |
+
pred_adata.write_h5ad(f"your_dir/pred_{sample_id}.h5ad")
|
31 |
+
```
|
32 |
+
|
33 |
+
The vocabularies for organs and technologies can be found in the following locations:
|
34 |
+
* [organ vocabulary](https://github.com/Graph-and-Geometric-Learning/STPath/blob/main/stpath/utils/constants.py#L98)
|
35 |
+
* [tech vocabulary](https://github.com/Graph-and-Geometric-Learning/STPath/blob/main/stpath/utils/constants.py#L20)
|
36 |
+
|
37 |
+
If the organ type or the tech type is unknown, you can set them to `None` in the inference function. Besides, the predicted gene expression values are log1p-transformed (`log(1 + x)`), consistent with the transformation applied during the training of STPath.
|
38 |
+
|
39 |
+
|
40 |
+
### Example of Inference
|
41 |
+
|
42 |
+
Here, we provide an example of how to perform inference on a [sample](https://github.com/Graph-and-Geometric-Learning/STPath/tree/main/example_data) from the HEST dataset:
|
43 |
+
|
44 |
+
```python
|
45 |
+
from scipy.stats import pearsonr
|
46 |
+
from stpath.hest_utils.st_dataset import load_adata
|
47 |
+
from stpath.hest_utils.file_utils import read_assets_from_h5
|
48 |
+
|
49 |
+
sample_id = "INT2"
|
50 |
+
source_dataroot = "STPath_dir" # the root directory of the STPath repository
|
51 |
+
with open(os.path.join(source_dataroot, "example_data/var_50genes.json")) as f:
|
52 |
+
hvg_list = json.load(f)['genes']
|
53 |
+
|
54 |
+
data_dict, _ = read_assets_from_h5(os.path.join(source_dataroot, f"{sample_id}.h5")) # load the data from the h5 file
|
55 |
+
coords = data_dict["coords"]
|
56 |
+
embeddings = data_dict["embeddings"]
|
57 |
+
barcodes = data_dict["barcodes"].flatten().astype(str).tolist()
|
58 |
+
adata = sc.read_h5ad(os.path.join(source_dataroot, f"{sample_id}.h5ad"))[barcodes, :]
|
59 |
+
|
60 |
+
# The return pred_adata includes the expressions of the genes in hvg_list, which is a list of highly variable genes.
|
61 |
+
pred_adata = agent.inference(
|
62 |
+
coords=coords,
|
63 |
+
img_features=embeddings,
|
64 |
+
organ_type="Kidney",
|
65 |
+
tech_type="Visium",
|
66 |
+
save_gene_names=hvg_list # we only need the highly variable genes for evaluation
|
67 |
+
)
|
68 |
+
|
69 |
+
# calculate the Pearson correlation coefficient between the predicted and ground truth gene expression
|
70 |
+
all_pearson_list = []
|
71 |
+
gt = np.log1p(adata[:, hvg_list].X.toarray()) # sparse -> dense
|
72 |
+
# go through each gene in the highly variable genes list
|
73 |
+
for i in range(len(hvg_list)):
|
74 |
+
pearson_corr, _ = pearsonr(gt[:, i], pred_adata.X[:, i])
|
75 |
+
all_pearson_list.append(pearson_corr.item())
|
76 |
+
print(f"Pearson correlation for {sample_id}: {np.mean(all_pearson_list)}") # 0.1562
|
77 |
+
```
|
78 |
+
|
79 |
+
### In-context Learning
|
80 |
+
|
81 |
+
STPath also support in-context learning, which allows users to provide the expression of a few spots to guide the model to predict the expression of other spots:
|
82 |
+
|
83 |
+
```python
|
84 |
+
from stpath.data.sampling_utils import PatchSampler
|
85 |
+
|
86 |
+
rightest_coord = np.where(coords[:, 0] == coords[:, 0].max())[0][0]
|
87 |
+
masked_ids = PatchSampler.sample_nearest_patch(coords, int(len(coords) * 0.95), rightest_coord) # predict the expression of the 95% spots
|
88 |
+
context_ids = np.setdiff1d(np.arange(len(coords)), masked_ids) # the index not in masked_ids will be used as context
|
89 |
+
context_gene_exps = adata.X.toarray()[context_ids]
|
90 |
+
context_gene_names = adata.var_names.tolist()
|
91 |
+
|
92 |
+
pred_adata = agent.inference(
|
93 |
+
coords=coords,
|
94 |
+
img_features=embeddings,
|
95 |
+
context_ids=context_ids, # the index of the context spots
|
96 |
+
context_gene_exps=context_gene_exps, # the expression of the context spots
|
97 |
+
context_gene_names=context_gene_names, # the gene names of the context spots
|
98 |
+
organ_type="Kidney",
|
99 |
+
tech_type="Visium",
|
100 |
+
save_gene_names=hvg_list,
|
101 |
+
)
|
102 |
+
|
103 |
+
all_pearson_list = []
|
104 |
+
gt = np.log1p(adata[:, hvg_list].X.toarray())[masked_ids, :] # groundtruth expression of the spots in masked_ids
|
105 |
+
pred = pred_adata.X[masked_ids, :] # predicted expression of the spots in masked_ids
|
106 |
+
for i in range(len(hvg_list)):
|
107 |
+
pearson_corr, _ = pearsonr(gt[:, i], pred[:, i])
|
108 |
+
all_pearson_list.append(pearson_corr.item())
|
109 |
+
print(f"Pearson correlation for {sample_id}: {np.mean(all_pearson_list)}") # 0.2449
|
110 |
+
```
|
111 |
+
|
112 |
+
|
113 |
+
## Reference
|
114 |
+
|
115 |
+
If you find our work useful in your research, please consider citing our paper:
|
116 |
+
|
117 |
+
```
|
118 |
+
@inproceedings{huang2025stflow,
|
119 |
+
title={Scalable Generation of Spatial Transcriptomics from Histology Images via Whole-Slide Flow Matching},
|
120 |
+
author={Huang, Tinglin and Liu, Tianyu and Babadi, Mehrtash and Jin, Wengong and Ying, Rex},
|
121 |
+
booktitle={International Conference on Machine Learning},
|
122 |
+
year={2025}
|
123 |
+
}
|
124 |
+
|
125 |
+
@article{huang2025stpath,
|
126 |
+
title={STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images},
|
127 |
+
author={Huang, Tinglin and Liu, Tianyu and Babadi, Mehrtash and Ying, Rex and Jin, Wengong},
|
128 |
+
journal={bioRxiv},
|
129 |
+
pages={2025--04},
|
130 |
+
year={2025},
|
131 |
+
publisher={Cold Spring Harbor Laboratory}
|
132 |
+
}
|
133 |
+
```
|
stfm.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03d49af98103c22eaee064632a366ad6ba2c1e627adcf47e00b13746a3b348fe
|
3 |
+
size 196728540
|