# STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images This is a Huggingface repo for the paper: > Tinglin Huang, Tianyu Liu, Mehrtash Babadi, Rex Ying, and Wengong Jin (2025). STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images. Paper in [bioRxiv](https://www.biorxiv.org/content/10.1101/2025.04.19.649665v2.abstract). Code in [GitHub](https://github.com/Graph-and-Geometric-Learning/STPath). ## Usage We provide an easy-to-use interface for users to perform inference on the pre-trained model, which can be found in `app/pipeline/inference.py`. Specifically, the following code snippet shows how to use it: ```python from stpath.app.pipeline.inference import STPathInference agent = STPathInference( gene_voc_path='STPath_dir/utils_data/symbol2ensembl.json', model_weight_path='your_dir/stpath.pkl', device=0 ) pred_adata = agent.inference( coords=coords, # [number_of_spots, 2] img_features=embeddings, # [number_of_spots, 1536], the image features extracted using Gigapath organ_type="Kidney", # Default is None tech_type="Visium", # Default is None save_gene_names=hvg_list # a list of gene names to save in the adata, e.g., ['GATA3', 'UBLE2C', ...]. None will save all genes in the model. ) # save adata pred_adata.write_h5ad(f"your_dir/pred_{sample_id}.h5ad") ``` The vocabularies for organs and technologies can be found in the following locations: * [organ vocabulary](https://github.com/Graph-and-Geometric-Learning/STPath/blob/main/stpath/utils/constants.py#L98) * [tech vocabulary](https://github.com/Graph-and-Geometric-Learning/STPath/blob/main/stpath/utils/constants.py#L20) If the organ type or the tech type is unknown, you can set them to `None` in the inference function. Besides, the predicted gene expression values are log1p-transformed (`log(1 + x)`), consistent with the transformation applied during the training of STPath. ### Example of Inference Here, we provide an example of how to perform inference on a [sample](https://github.com/Graph-and-Geometric-Learning/STPath/tree/main/example_data) from the HEST dataset: ```python from scipy.stats import pearsonr from stpath.hest_utils.st_dataset import load_adata from stpath.hest_utils.file_utils import read_assets_from_h5 sample_id = "INT2" source_dataroot = "STPath_dir" # the root directory of the STPath repository with open(os.path.join(source_dataroot, "example_data/var_50genes.json")) as f: hvg_list = json.load(f)['genes'] data_dict, _ = read_assets_from_h5(os.path.join(source_dataroot, f"{sample_id}.h5")) # load the data from the h5 file coords = data_dict["coords"] embeddings = data_dict["embeddings"] barcodes = data_dict["barcodes"].flatten().astype(str).tolist() adata = sc.read_h5ad(os.path.join(source_dataroot, f"{sample_id}.h5ad"))[barcodes, :] # The return pred_adata includes the expressions of the genes in hvg_list, which is a list of highly variable genes. pred_adata = agent.inference( coords=coords, img_features=embeddings, organ_type="Kidney", tech_type="Visium", save_gene_names=hvg_list # we only need the highly variable genes for evaluation ) # calculate the Pearson correlation coefficient between the predicted and ground truth gene expression all_pearson_list = [] gt = np.log1p(adata[:, hvg_list].X.toarray()) # sparse -> dense # go through each gene in the highly variable genes list for i in range(len(hvg_list)): pearson_corr, _ = pearsonr(gt[:, i], pred_adata.X[:, i]) all_pearson_list.append(pearson_corr.item()) print(f"Pearson correlation for {sample_id}: {np.mean(all_pearson_list)}") # 0.1562 ``` ### In-context Learning STPath also support in-context learning, which allows users to provide the expression of a few spots to guide the model to predict the expression of other spots: ```python from stpath.data.sampling_utils import PatchSampler rightest_coord = np.where(coords[:, 0] == coords[:, 0].max())[0][0] masked_ids = PatchSampler.sample_nearest_patch(coords, int(len(coords) * 0.95), rightest_coord) # predict the expression of the 95% spots context_ids = np.setdiff1d(np.arange(len(coords)), masked_ids) # the index not in masked_ids will be used as context context_gene_exps = adata.X.toarray()[context_ids] context_gene_names = adata.var_names.tolist() pred_adata = agent.inference( coords=coords, img_features=embeddings, context_ids=context_ids, # the index of the context spots context_gene_exps=context_gene_exps, # the expression of the context spots context_gene_names=context_gene_names, # the gene names of the context spots organ_type="Kidney", tech_type="Visium", save_gene_names=hvg_list, ) all_pearson_list = [] gt = np.log1p(adata[:, hvg_list].X.toarray())[masked_ids, :] # groundtruth expression of the spots in masked_ids pred = pred_adata.X[masked_ids, :] # predicted expression of the spots in masked_ids for i in range(len(hvg_list)): pearson_corr, _ = pearsonr(gt[:, i], pred[:, i]) all_pearson_list.append(pearson_corr.item()) print(f"Pearson correlation for {sample_id}: {np.mean(all_pearson_list)}") # 0.2449 ``` ## Reference If you find our work useful in your research, please consider citing our paper: ``` @inproceedings{huang2025stflow, title={Scalable Generation of Spatial Transcriptomics from Histology Images via Whole-Slide Flow Matching}, author={Huang, Tinglin and Liu, Tianyu and Babadi, Mehrtash and Jin, Wengong and Ying, Rex}, booktitle={International Conference on Machine Learning}, year={2025} } @article{huang2025stpath, title={STPath: A Generative Foundation Model for Integrating Spatial Transcriptomics and Whole Slide Images}, author={Huang, Tinglin and Liu, Tianyu and Babadi, Mehrtash and Ying, Rex and Jin, Wengong}, journal={bioRxiv}, pages={2025--04}, year={2025}, publisher={Cold Spring Harbor Laboratory} } ```