File size: 56,005 Bytes
2c1de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bf483f
 
 
 
 
 
 
 
2c1de37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:197462
- loss:MSELoss
base_model: Qwen/Qwen3-Embedding-0.6B
widget:
- source_sentence: 'Instruct: Given a web search query, retrieve relevant passages
    that answer the query

    Query:who sings the song i don''t want to work'
  sentences:
  - The Invisible Man Griffin is the surname of the story's protagonist. His name
    is not mentioned until about halfway through the book. Consumed with his greed
    for power and fame, he is the model of science without humanity. A gifted young
    student, he becomes interested in the science of refraction. During his experiments,
    he accidentally discovers chemicals (combined with an unspecified kind of radiation)
    that would make living tissue invisible. Obsessed with his discovery, he tries
    the experiment on himself and becomes invisible. However, he does not know how
    to reverse the process, and he slowly discovers that the advantages of being invisible
    do not outweigh the disadvantages and the problems he faces. Thus begins his downfall
    as he takes the road to crime for his survival, revealing in the process his lack
    of conscience, inhumanity and complete selfishness. He progresses from obsession
    to fanaticism, to insanity, and finally to his fateful end.
  - 'Instruct: Given a web search query, retrieve relevant passages that answer the
    query

    Query:who did the united states become independent from'
  - Jordan Belfort Jordan Ross Belfort (/ˈbɛlfɔːrt/; born July 9, 1962) is an American
    author, motivational speaker, and former stockbroker. In 1999, he pleaded guilty
    to fraud and related crimes in connection with stock-market manipulation and running
    a boiler room as part of a penny-stock scam. Belfort spent 22 months in prison
    as part of an agreement under which he gave testimony against numerous partners
    and subordinates in his fraud scheme.[5] He published the memoir The Wolf of Wall
    Street, which was adapted into a film and released in 2013.
- source_sentence: London water supply infrastructure Most of London's water comes
    from non-tidal parts of the Thames and Lea, with the remainder being abstracted
    from underground sources.[22]
  sentences:
  - 'Instruct: Given a web search query, retrieve relevant passages that answer the
    query

    Query:what is the number on the hogwarts express'
  - 'Instruct: Given a web search query, retrieve relevant passages that answer the
    query

    Query:when did roughing the kicker become a rule'
  - Agora Early in Greek history (18th century–8th century BC), free-born citizens
    would gather in the agora for military duty or to hear statements of the ruling
    king or council. Later, the Agora also served as a marketplace where merchants
    kept stalls or shops to sell their goods amid colonnades. This attracted artisans
    who built workshops nearby.[2]
- source_sentence: 'Instruct: Given a web search query, retrieve relevant passages
    that answer the query

    Query:what is meant by lagging and leading current in ac circuit'
  sentences:
  - .org The domain name org is a generic top-level domain (gTLD) of the Domain Name
    System (DNS) used in the Internet. The name is truncated from organization. It
    was one of the original domains established in 1985, and has been operated by
    the Public Interest Registry since 2003. The domain was originally intended for
    non-profit entities, but this restriction was not enforced and has been removed.
    The domain is commonly used by schools, open-source projects, and communities,
    but also by some for-profit entities. The number of registered domains in org
    has increased from fewer than one million in the 1990s, to ten million as of June
    2013.
  - 'Instruct: Given a web search query, retrieve relevant passages that answer the
    query

    Query:how many episode in season 1 game of thrones'
  - 'Instruct: Given a web search query, retrieve relevant passages that answer the
    query

    Query:when is season 11 of doctor who coming out'
- source_sentence: Gabriel Vlad (born April 9, 1969) in Bucharest, is a former Romanian
    former rugby union football player.
  sentences:
  - As of May 2013, The Jewish Tribune had a circulation of 60,500 copies a week which
    made it, for a time, the largest Jewish weekly publication in Canada.
  - Cunjamba Dima is a city and commune of Angola, located in the province of Cuando
    Cubango.
  - He also acted in the National award winning Tamil movie Vazhakku Enn 18/9, directed
    by Balaji Sakthivel.
- source_sentence: The actress was thirteen when she was offered the role of Annie.
  sentences:
  - All profits from the sale and streaming of the song go to music education supported
    by the CMA Foundation.
  - Narsingh Temple is situated at the across of the village just across confluence
    of Magri State village.
  - Contrasting significantly from other soccer leagues in the U.S., WLS intends to
    be an open entry, promotion and relegation competition.
datasets:
- sentence-transformers/natural-questions
- sentence-transformers/gooaq
- sentence-transformers/wikipedia-en-sentences
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- negative_mse
model-index:
- name: SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.42
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.64
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.76
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.42
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.21333333333333335
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15200000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08199999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.42
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.64
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.76
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.82
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.620918816092183
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5567777777777778
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5664067325709117
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.38
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31333333333333335
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.29200000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.254
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.041275151654868704
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.06868331254409366
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.08524350018847202
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.11409038508225758
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.30429750607308503
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.44163492063492066
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.1254808602198398
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.4
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.72
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.76
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24666666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.088
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.39
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.69
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.73
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.79
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6214012092294585
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.571047619047619
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.564828869259454
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.4000000000000001
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7666666666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4000000000000001
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25777777777777783
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20133333333333336
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1413333333333333
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2837583838849562
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4662277708480312
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5250811667294907
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5746967950274192
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5155391771315755
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5231534391534391
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.41890548735006855
      name: Cosine Map@100
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: negative_mse
      value: -0.016825005412101746
      name: Negative Mse
---

# SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [nq](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

> [!NOTE]
> This is a first experiment attempting to distil the powerful [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) model from 28 layers down to some lower layer count, in an attempt to speed up inference with minimal performance reductions.
> 
> To be specific, this early model falls from ~0.55 NDCG@10 average across NanoMSMARCO, NanoNFCorpus, and NanoNQ with the full 28 layers, to 0.5155 NDCG@10 on that selection with just 18 layers.
> Early tests indicate that using only 18 layers results in a 1.51x speedup compared to the full model.
> 
> This model was distilled using only 200k texts from one domain, reaching superior performance should be possible, especially with stronger distillation techniques like [MarginMSE](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#marginmseloss).

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision b22da495047858cce924d27d76261e96be6febc0 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [nq](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen3Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/Qwen3-Embedding-0.6B-18-layers")
# Run inference
sentences = [
    'The actress was thirteen when she was offered the role of Annie.',
    'Contrasting significantly from other soccer leagues in the U.S., WLS intends to be an open entry, promotion and relegation competition.',
    'Narsingh Temple is situated at the across of the village just across confluence of Magri State village.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "query_prompt": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:"
  }
  ```

| Metric              | NanoMSMARCO | NanoNFCorpus | NanoNQ     |
|:--------------------|:------------|:-------------|:-----------|
| cosine_accuracy@1   | 0.42        | 0.38         | 0.4        |
| cosine_accuracy@3   | 0.64        | 0.44         | 0.72       |
| cosine_accuracy@5   | 0.76        | 0.52         | 0.76       |
| cosine_accuracy@10  | 0.82        | 0.66         | 0.82       |
| cosine_precision@1  | 0.42        | 0.38         | 0.4        |
| cosine_precision@3  | 0.2133      | 0.3133       | 0.2467     |
| cosine_precision@5  | 0.152       | 0.292        | 0.16       |
| cosine_precision@10 | 0.082       | 0.254        | 0.088      |
| cosine_recall@1     | 0.42        | 0.0413       | 0.39       |
| cosine_recall@3     | 0.64        | 0.0687       | 0.69       |
| cosine_recall@5     | 0.76        | 0.0852       | 0.73       |
| cosine_recall@10    | 0.82        | 0.1141       | 0.79       |
| **cosine_ndcg@10**  | **0.6209**  | **0.3043**   | **0.6214** |
| cosine_mrr@10       | 0.5568      | 0.4416       | 0.571      |
| cosine_map@100      | 0.5664      | 0.1255       | 0.5648     |

#### Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "query_prompts": {
          "msmarco": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
          "nfcorpus": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
          "nq": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:"
      }
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4        |
| cosine_accuracy@3   | 0.6        |
| cosine_accuracy@5   | 0.68       |
| cosine_accuracy@10  | 0.7667     |
| cosine_precision@1  | 0.4        |
| cosine_precision@3  | 0.2578     |
| cosine_precision@5  | 0.2013     |
| cosine_precision@10 | 0.1413     |
| cosine_recall@1     | 0.2838     |
| cosine_recall@3     | 0.4662     |
| cosine_recall@5     | 0.5251     |
| cosine_recall@10    | 0.5747     |
| **cosine_ndcg@10**  | **0.5155** |
| cosine_mrr@10       | 0.5232     |
| cosine_map@100      | 0.4189     |

#### Knowledge Distillation

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | Value       |
|:-----------------|:------------|
| **negative_mse** | **-0.0168** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### nq

* Dataset: [nq](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 197,462 training samples
* Columns: <code>text</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                | label                                 |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                              | list                                  |
  | details | <ul><li>min: 27 tokens</li><li>mean: 89.38 tokens</li><li>max: 505 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | label                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
  | <code>Instruct: Given a web search query, retrieve relevant passages that answer the query<br>Query:the movie bernie based on a true story</code>                                                                                                                                                                                                                                                                                                                                                                                                 | <code>[-0.05126953125, -0.0020294189453125, 0.00152587890625, 0.060791015625, 0.022216796875, ...]</code>  |
  | <code>College World Series The College World Series, or CWS, is an annual June baseball tournament held in Omaha, Nebraska. The CWS is the culmination of the National Collegiate Athletic Association (NCAA) Division I Baseball Championship tournament—featuring 64 teams in the first round—which determines the NCAA Division I college baseball champion. The eight participating teams are split into two, four-team, double-elimination brackets, with the winners of each bracket playing in a best-of-three championship series.</code> | <code>[0.033935546875, -0.0908203125, -0.010498046875, 0.0625, -0.01263427734375, ...]</code>              |
  | <code>Instruct: Given a web search query, retrieve relevant passages that answer the query<br>Query:does the femoral nerve turn into the saphenous nerve</code>                                                                                                                                                                                                                                                                                                                                                                                   | <code>[0.052978515625, -0.0028228759765625, -0.0022430419921875, 0.0732421875, 0.044677734375, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Evaluation Datasets

#### nq

* Dataset: [nq](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 3,000 evaluation samples
* Columns: <code>text</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                | label                                 |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                              | list                                  |
  | details | <ul><li>min: 21 tokens</li><li>mean: 87.24 tokens</li><li>max: 410 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | label                                                                                                     |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
  | <code>Instruct: Given a web search query, retrieve relevant passages that answer the query<br>Query:who was the heir apparent of the austro-hungarian empire in 1914</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>[0.0262451171875, 0.0556640625, -0.0, -0.03076171875, -0.05712890625, ...]</code>                   |
  | <code>Instruct: Given a web search query, retrieve relevant passages that answer the query<br>Query:who played tommy in coward of the county</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>[-0.00848388671875, -0.02294921875, -0.00182342529296875, 0.060546875, -0.021240234375, ...]</code> |
  | <code>Vertebra The vertebral arch is formed by pedicles and laminae. Two pedicles extend from the sides of the vertebral body to join the body to the arch. The pedicles are short thick processes that extend, one from each side, posteriorly, from the junctions of the posteriolateral surfaces of the centrum, on its upper surface. From each pedicle a broad plate, a lamina, projects backwards and medialwards to join and complete the vertebral arch and form the posterior border of the vertebral foramen, which completes the triangle of the vertebral foramen.[6] The upper surfaces of the laminae are rough to give attachment to the ligamenta flava. These ligaments connect the laminae of adjacent vertebra along the length of the spine from the level of the second cervical vertebra. Above and below the pedicles are shallow depressions called vertebral notches (superior and inferior). When the vertebrae articulate the notches align with those on adjacent vertebrae and these form the openings of the int...</code> | <code>[0.062255859375, -0.005706787109375, -0.009765625, 0.035400390625, -0.0125732421875, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,000 evaluation samples
* Columns: <code>text</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                                | label                                 |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                              | list                                  |
  | details | <ul><li>min: 10 tokens</li><li>mean: 43.88 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                                     | label                                                                                                        |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
  | <code>Instruct: Given a web search query, retrieve relevant passages that answer the query<br>Query:what essential oils are soothing?</code>                                                                                             | <code>[-0.025146484375, 0.06591796875, -0.0025634765625, 0.0732421875, -0.046630859375, ...]</code>          |
  | <code>Titles of books should be underlined or put in italics . (Titles of stories, essays and poems are in "quotation marks.") Refer to the text specifically as a novel, story, essay, memoir, or poem, depending on what it is.</code> | <code>[-0.006988525390625, -0.050537109375, -0.007476806640625, -0.07177734375, -0.049560546875, ...]</code> |
  | <code>Dakine Cyclone Wet/Dry 32L Backpack. Born from the legacy of our most iconic surf pack, the Cyclone Collection is a family of super-technical and durable wet/dry packs and bags.</code>                                           | <code>[0.0016632080078125, 0.04150390625, -0.01324462890625, 0.0234375, 0.03173828125, ...]</code>           |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

#### wikipedia

* Dataset: [wikipedia](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 3,000 evaluation samples
* Columns: <code>text</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text                                                                              | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | list                                  |
  | details | <ul><li>min: 5 tokens</li><li>mean: 28.1 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | text                                                                                                                                                                                                                                                                                                                                                                                      | label                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
  | <code>The daughter of Vice-admiral George Davies and Julia Hume, she spent her younger years on board the ship he was stationed, the Griper.</code>                                                                                                                                                                                                                                       | <code>[0.0361328125, 0.01904296875, -0.003662109375, 0.0247802734375, 0.0140380859375, ...]</code>       |
  | <code>The impetus for the project began when Amalgamated Dynamics, hired to provide the practical effects for The Thing, a prequel to John Carpenter's 1982 classic film-renowned for its almost exclusive use of practical effects-became disillusioned upon discovering the theatrical release had the bulk of their effects digitally replaced with computer-generated imagery.</code> | <code>[-0.0106201171875, -0.0439453125, -0.01104736328125, 0.00946044921875, 0.0322265625, ...]</code>   |
  | <code>Lost Angeles, his second feature film, starring Joelle Carter and Kelly Blatz, had its world premiere at the Oldenburg International Film Festival in 2012.</code>                                                                                                                                                                                                                  | <code>[0.0272216796875, 0.0263671875, -0.007110595703125, 0.0294189453125, 0.01129150390625, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | nq loss    | gooaq loss | wikipedia loss | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | negative_mse |
|:----------:|:--------:|:-------------:|:----------:|:----------:|:--------------:|:--------------------------:|:---------------------------:|:---------------------:|:----------------------------:|:------------:|
| -1         | -1       | -             | -          | -          | -              | 0.2033                     | 0.0972                      | 0.1638                | 0.1548                       | -0.0985      |
| 0.0162     | 200      | 0.0008        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.0324     | 400      | 0.0004        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.0486     | 600      | 0.0003        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.0648     | 800      | 0.0003        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.0810     | 1000     | 0.0002        | 0.0002     | 0.0003     | 0.0003         | 0.5482                     | 0.2864                      | 0.5995                | 0.4780                       | -0.0280      |
| 0.0972     | 1200     | 0.0002        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.1134     | 1400     | 0.0002        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.1296     | 1600     | 0.0002        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.1458     | 1800     | 0.0002        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.1620     | 2000     | 0.0002        | 0.0002     | 0.0003     | 0.0003         | 0.6136                     | 0.2926                      | 0.6028                | 0.5030                       | -0.0218      |
| 0.1783     | 2200     | 0.0002        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.1945     | 2400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.2107     | 2600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.2269     | 2800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.2431     | 3000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6169                     | 0.2990                      | 0.5781                | 0.4980                       | -0.0199      |
| 0.2593     | 3200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.2755     | 3400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.2917     | 3600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.3079     | 3800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.3241     | 4000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6137                     | 0.3000                      | 0.5987                | 0.5041                       | -0.0187      |
| 0.3403     | 4200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.3565     | 4400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.3727     | 4600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.3889     | 4800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.4051     | 5000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6235                     | 0.2945                      | 0.6105                | 0.5095                       | -0.0182      |
| 0.4213     | 5200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.4375     | 5400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.4537     | 5600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.4699     | 5800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.4861     | 6000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6183                     | 0.2999                      | 0.6141                | 0.5108                       | -0.0175      |
| 0.5023     | 6200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.5186     | 6400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.5348     | 6600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.5510     | 6800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.5672     | 7000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6129                     | 0.3005                      | 0.6201                | 0.5112                       | -0.0173      |
| 0.5834     | 7200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.5996     | 7400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.6158     | 7600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.6320     | 7800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.6482     | 8000     | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6258                     | 0.3032                      | 0.6099                | 0.5130                       | -0.0170      |
| 0.6644     | 8200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.6806     | 8400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.6968     | 8600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.7130     | 8800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| **0.7292** | **9000** | **0.0001**    | **0.0001** | **0.0002** | **0.0002**     | **0.6209**                 | **0.3043**                  | **0.6214**            | **0.5155**                   | **-0.0168**  |
| 0.7454     | 9200     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.7616     | 9400     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.7778     | 9600     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.7940     | 9800     | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.8102     | 10000    | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6224                     | 0.3015                      | 0.6183                | 0.5141                       | -0.0168      |
| 0.8264     | 10200    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.8427     | 10400    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.8589     | 10600    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.8751     | 10800    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.8913     | 11000    | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6224                     | 0.3014                      | 0.6155                | 0.5131                       | -0.0167      |
| 0.9075     | 11200    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.9237     | 11400    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.9399     | 11600    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.9561     | 11800    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| 0.9723     | 12000    | 0.0001        | 0.0001     | 0.0002     | 0.0002         | 0.6247                     | 0.3020                      | 0.6133                | 0.5133                       | -0.0167      |
| 0.9885     | 12200    | 0.0001        | -          | -          | -              | -                          | -                           | -                     | -                            | -            |
| -1         | -1       | -             | -          | -          | -              | 0.6209                     | 0.3043                      | 0.6214                | 0.5155                       | -0.0168      |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.51.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->