--- base_model: EleutherAI/pythia-160m-deduped library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: outputs/lora-alpaca-pythia results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: EleutherAI/pythia-160m-deduped load_in_8bit: false datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca dataset_prepared_path: val_set_size: 0.05 adapter: lora lora_model_dir: sequence_len: 512 lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: - query_key_value - dense - dense_h_to_4h - dense_4h_to_h lora_target_linear: lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific output_dir: ./outputs/lora-alpaca-pythia gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 4 learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: false tf32: true early_stopping_patience: resume_from_checkpoint: local_rank: weight_decay: 0.1 evals_per_epoch: 4 logging_steps: 1 push_to_hub: tommyp111/pythia-160m-deduped-alpaca-lora wandb_project: pythia-alpaca-lora wandb_name: pythia-160m-grad-norm optimizer: adamw_torch adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 gradient_checkpointing: true warmup_steps: 10000 ```

# outputs/lora-alpaca-pythia This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 8.3121 | 0.0003 | 1 | 28.8947 | | 8.51 | 0.2502 | 798 | 28.8493 | | 7.1252 | 0.5003 | 1596 | 28.6938 | | 11.0054 | 0.7505 | 2394 | 27.8628 | | 2.7374 | 1.0006 | 3192 | 5.7286 | | 3.3225 | 1.2508 | 3990 | 3.8328 | | 2.8093 | 1.5009 | 4788 | 3.0960 | | 2.5311 | 1.7511 | 5586 | 2.7825 | | 1.9888 | 2.0013 | 6384 | 2.6022 | | 2.1802 | 2.2514 | 7182 | 2.4945 | | 2.3964 | 2.5016 | 7980 | 2.3910 | | 2.1141 | 2.7517 | 8778 | 2.3618 | | 2.7874 | 3.0019 | 9576 | 2.3030 | | 2.2354 | 3.2520 | 10374 | 2.2600 | | 2.0795 | 3.5022 | 11172 | 2.2918 | | 2.2697 | 3.7524 | 11970 | 2.2758 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1