sahsaeedi commited on
Commit
d9fc258
·
verified ·
1 Parent(s): b49913e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -162
README.md CHANGED
@@ -1,199 +1,91 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
3
+ tags:
4
+ - alignment-handbook
5
+ - generated_from_trainer
6
+ datasets:
7
+ - princeton-nlp/llama3-ultrafeedback-armorm
8
+ model-index:
9
+ - name: tpo-alignment/Instruct-Llama-3-8B-TPO-L-y2
10
+ results: []
11
+ license: mit
12
  ---
13
+ # Instruct-Llama-3-8B-TPO-L-y2 Model Card
14
 
15
+ TPO (Triple Preference Optimization) is a novel preference optimization algorithm aimed at enhancing the instruction-following and reasoning capabilities of large language models through a one-step optimization process. Additionally, we introduce TPO-L, a length-controlled variant of TPO that significantly boosts performance by incorporating a reward margin into TPO’s structure. For more details, refer to our [preprint](https://arxiv.org/abs/2405.16681) and [GitHub repository](https://github.com/sahsaeedi/TPO/).
 
 
 
 
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
+ We fine-tuned [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on [princeton-nlp/llama3-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm) with the TPO-L objective. For fine-tuning, we selected the highest-scoring response as the gold response, the second-best response as the preferred response, and the lowest-scoring response as the rejected response.
22
 
23
+ - **Developed by:** Amir Saeidi, Shivanshu Verma, Aswin RRV, Kashif Rasul, Chitta Baral
24
+ - **Model type:** Causal Language Model
25
+ - **License:** mistral
26
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
27
 
28
+ ### Model Sources
 
 
 
 
 
 
 
 
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** https://github.com/sahsaeedi/TPO
33
+ - **Paper:** https://arxiv.org/abs/2405.16681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
 
 
 
 
 
 
 
35
 
36
  ## How to Get Started with the Model
37
+ ```
38
+ import torch
39
+ from transformers import pipeline
40
+ model_id = "tpo-alignment/Instruct-Llama-3-8B-TPO-L-y2"
41
+ generator = pipeline(
42
+ "text-generation",
43
+ model=model_id,
44
+ model_kwargs={"torch_dtype": torch.bfloat16},
45
+ device="cuda",
46
+ )
47
+ outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}],
48
+ do_sample=False,
49
+ eos_token_id=[generator.tokenizer.convert_tokens_to_ids("<end_of_turn>"), generator.tokenizer.eos_token_id],
50
+ max_new_tokens=200)
51
+ print(outputs[0]['generated_text'])
52
+ ```
53
 
54
  ## Training Details
55
 
56
  ### Training Data
57
 
58
+ We use [princeton-nlp/llama3-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm) as the preference optimization dataset.
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  #### Training Hyperparameters
61
 
62
+ The hyperparameters used can be found in the [repository](https://github.com/sahsaeedi/TPO).
 
 
 
 
 
 
 
 
 
 
 
 
63
 
 
64
 
 
65
 
66
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  ### Model Architecture and Objective
69
 
70
+ The model architecture is based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). We use the TPO training objective proposed in our [preprint](https://arxiv.org/abs/2405.16681).
 
 
 
 
71
 
72
  #### Hardware
73
 
74
+ We used 8xA100 GPUs for model training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
 
76
 
 
77
 
78
+ ## Citation
79
 
80
+ TPO paper:
81
+ ```
82
+ @misc{saeidi2025triplepreferenceoptimizationachieving,
83
+ title={Triple Preference Optimization: Achieving Better Alignment using a Single Step Optimization},
84
+ author={Amir Saeidi and Shivanshu Verma and Aswin RRV and Kashif Rasul and Chitta Baral},
85
+ year={2025},
86
+ eprint={2405.16681},
87
+ archivePrefix={arXiv},
88
+ primaryClass={cs.CL},
89
+ url={https://arxiv.org/abs/2405.16681},
90
+ }
91
+ ```