Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
---
|
3 |
library_name: transformers
|
4 |
tags:
|
@@ -6,22 +5,43 @@ tags:
|
|
6 |
- text-classification
|
7 |
base_model: TaylorAI/gte-tiny
|
8 |
widget:
|
9 |
-
- text:
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
# Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
- Problem
|
|
|
|
|
|
|
15 |
|
16 |
-
##
|
17 |
-
loss: 0.04163680970668793
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
|
|
5 |
- text-classification
|
6 |
base_model: TaylorAI/gte-tiny
|
7 |
widget:
|
8 |
+
- text: I love AutoTrain
|
9 |
+
datasets:
|
10 |
+
- trentmkelly/gpt-slop-2
|
11 |
---
|
12 |
|
13 |
+
# slop-detector-mini-2 Model Card
|
14 |
+
|
15 |
+
## Overview
|
16 |
+
|
17 |
+
Binary text classification model for detecting AI-generated content in Reddit comments. Optimized for client-side inference via Transformers.js in browser extensions.
|
18 |
+
|
19 |
+
**Repository**: [reddit-llm-comment-detector](https://github.com/trentmkelly/reddit-llm-comment-detector)
|
20 |
+
|
21 |
+
## Model Details
|
22 |
|
23 |
+
- **Problem Type**: Binary Text Classification
|
24 |
+
- **Training**: AutoTrain framework
|
25 |
+
- **Domain**: Reddit-style conversational text
|
26 |
+
- **Deployment**: Browser-based inference (ONNX/Transformers.js)
|
27 |
|
28 |
+
## Performance Metrics
|
|
|
29 |
|
30 |
+
| Metric | Value |
|
31 |
+
|--------|-------|
|
32 |
+
| **Loss** | 0.04163680970668793 |
|
33 |
+
| **F1 Score** | 0.9911573288058857 |
|
34 |
+
| **Precision** | 0.985579628587507 |
|
35 |
+
| **Recall** | 0.9967985202048947 |
|
36 |
+
| **AUC** | 0.9997115393414552 |
|
37 |
+
| **Accuracy** | 0.991107000569152 |
|
38 |
|
39 |
+
## Usage
|
40 |
|
41 |
+
Used in browser extensions for real-time detection of AI-generated Reddit comments. Comments with >50% confidence scores are flagged for users.
|
42 |
|
43 |
+
## Limitations
|
44 |
|
45 |
+
- Optimized for Reddit-style text; may vary on formal content
|
46 |
+
- English language focused
|
47 |
+
- No detection system is 100% accurate
|