---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v2-moe
widget:
- source_sentence: "the Polaris Solicitations as currently drafted do not comply with\
\ Section 3306(c)(3). In its request \nto apply Section 3306(c)(3) to the Polaris\
\ Solicitations, GSA stated that \n \n \n \nSupplement 2, AR at 2907–08. Because\
\ GSA adopted an overly broad understanding of Section \n3306(c)(3)’s scope, GSA\
\ stated the Solicitations will include a “full range of order types,”"
sentences:
- What did Al-Hamim confirm about the citations?
- What understanding did GSA adopt regarding Section 3306(c)(3)'s scope?
- What was the reason for denying the agency's motion without prejudice?
- source_sentence: "objective (as position, profit, or a prize); [or to] be in a state\
\ of rivalry.” Compete, Merriam-\nWebster’s Collegiate Dictionary (11th ed. 2003);\
\ see Competing, Merriam-Webster Dictionary, \nhttps://www.merriam-webster.com/dictionary/competing\
\ (last visited Mar. 7, 2023) (defining \n“competing” as being “in a state of\
\ rivalry or competition (as for position, profit, or a prize)”)."
sentences:
- Who claims that Congress has done much of the work to reconcile FACA § 10(b) and
the FOIA exemptions?
- When was the online dictionary last visited according to the document?
- What action will the Court take regarding Count Nine in No. 11-444?
- source_sentence: "a witness for the State, Mr. Zimmerman testified that he was shot\
\ in the back while sitting \nin the driver’s seat of his vehicle. Over objection,\
\ during Mr. Zimmerman’s direct \nexamination, the circuit court admitted into\
\ evidence a video, retrieved by a detective, that \nhad been recorded by a camera\
\ mounted on the exterior wall of a residence near the site of"
sentences:
- What must a complaint do to defeat a Rule 12(b)(6) motion?
- What was the position of Mr. Zimmerman when he was shot?
- What does Rule 11 impose on any party who signs a pleading, motion, or other paper?
- source_sentence: "than if they had submitted a new request on the same subject,”\
\ Fifth Lutz Decl. ¶ 9, implicitly \nconfirms that the Assignment of Rights Policy\
\ tends to prejudice requesters. To the extent an \n“assignee would be placed\
\ in a better position to litigate the assigned request than if they had \nsubmitted\
\ a new request on the same subject,” id., then a FOIA requester “submit[ing]\
\ a new"
sentences:
- What does the Fifth Lutz Declaration paragraph 9 imply about the Assignment of
Rights Policy?
- When did Illinois Supreme Court Rule 663 become effective?
- What would happen if the Solicitations were amended to comply with the regulations
according to the plaintiffs?
- source_sentence: "against six federal agencies pursuant to the Freedom of Information\
\ Act (“FOIA”), 5 U.S.C. \n§ 552, claiming that the defendant agencies have violated\
\ the FOIA in numerous ways.1 NSC’s \nclaims run the gamut, including challenges\
\ to: the withholding of specific information; the \nadequacy of the agencies’\
\ search efforts; the refusal to process FOIA requests; the refusal to"
sentences:
- Which case was quoted in Entertainment Ltd. v. U.S. Dep’t of Interior regarding
the retroactivity of statutes?
- How many federal agencies is the action against?
- Who questioned Mr. Zimmerman after the bench conference?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5533230293663061
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6105100463678517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7125193199381762
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8083462132921174
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5533230293663061
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5275631117980423
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4126738794435858
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.2502318392581144
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1984801648634724
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5175167439464194
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6554611025244719
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7895414734672848
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6787324741180409
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.610266553813694
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6544139401960045
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5502318392581144
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5996908809891809
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7001545595054096
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7897990726429676
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5502318392581144
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5218959299330241
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4046367851622875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24296754250386396
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19886656362699637
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5137815558990211
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.643353941267388
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7695775373518804
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6665384668011486
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6033776158582955
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6473311395712609
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5239567233384853
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5703245749613601
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6754250386398764
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.768160741885626
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5239567233384853
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4951056156620299
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3888717156105101
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.23910355486862445
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18830499742400822
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4858320453374549
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6172076249356002
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.750772797527048
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6435527388538038
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5769025539118272
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6222193004139938
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.46213292117465227
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5208655332302936
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6089644513137558
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6862442040185471
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.46213292117465227
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4456465739309634
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3536321483771252
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.21298299845440496
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1656362699639361
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4363730036063884
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5607934054611026
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6692426584234931
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5742333897429361
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5144243271754859
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5623047162890543
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.3276661514683153
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.38639876352395675
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.47913446676970634
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5641421947449768
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3276661514683153
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3219989696032972
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2676970633693972
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.16924265842349304
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1172076249356002
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.321483771251932
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.43379701184956204
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5401854714064915
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4411753101398826
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38149088589583163
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.43191750141987145
name: Cosine Map@100
---
# ModernBERT Embed base Legal Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tsss1/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'against six federal agencies pursuant to the Freedom of Information Act (“FOIA”), 5 U.S.C. \n§ 552, claiming that the defendant agencies have violated the FOIA in numerous ways.1 NSC’s \nclaims run the gamut, including challenges to: the withholding of specific information; the \nadequacy of the agencies’ search efforts; the refusal to process FOIA requests; the refusal to',
'How many federal agencies is the action against?',
'Which case was quoted in Entertainment Ltd. v. U.S. Dep’t of Interior regarding the retroactivity of statutes?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.5533 | 0.5502 | 0.524 | 0.4621 | 0.3277 |
| cosine_accuracy@3 | 0.6105 | 0.5997 | 0.5703 | 0.5209 | 0.3864 |
| cosine_accuracy@5 | 0.7125 | 0.7002 | 0.6754 | 0.609 | 0.4791 |
| cosine_accuracy@10 | 0.8083 | 0.7898 | 0.7682 | 0.6862 | 0.5641 |
| cosine_precision@1 | 0.5533 | 0.5502 | 0.524 | 0.4621 | 0.3277 |
| cosine_precision@3 | 0.5276 | 0.5219 | 0.4951 | 0.4456 | 0.322 |
| cosine_precision@5 | 0.4127 | 0.4046 | 0.3889 | 0.3536 | 0.2677 |
| cosine_precision@10 | 0.2502 | 0.243 | 0.2391 | 0.213 | 0.1692 |
| cosine_recall@1 | 0.1985 | 0.1989 | 0.1883 | 0.1656 | 0.1172 |
| cosine_recall@3 | 0.5175 | 0.5138 | 0.4858 | 0.4364 | 0.3215 |
| cosine_recall@5 | 0.6555 | 0.6434 | 0.6172 | 0.5608 | 0.4338 |
| cosine_recall@10 | 0.7895 | 0.7696 | 0.7508 | 0.6692 | 0.5402 |
| **cosine_ndcg@10** | **0.6787** | **0.6665** | **0.6436** | **0.5742** | **0.4412** |
| cosine_mrr@10 | 0.6103 | 0.6034 | 0.5769 | 0.5144 | 0.3815 |
| cosine_map@100 | 0.6544 | 0.6473 | 0.6222 | 0.5623 | 0.4319 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 5,822 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
aspect” of “substantial independent authority.” Dong v. Smithsonian Inst., 125 F.3d 877, 881
4 See CREW v. Office of Admin., 566 F.3d 219, 220 (D.C. Cir. 2009); Armstrong v. Exec. Office
of the President, 90 F.3d 553, 558 (D.C. Cir. 1996); Sweetland v. Walters, 60 F.3d 852, 854
| What court circuit is mentioned in connection with the case Sweetland v. Walters?
|
| the entire list of remaining PQPs shifts up one position.
Once GSA has verified, through the evaluation and validation process, the point totals
claimed by the 100/80/70 highest-scoring offerors, GSA will cease evaluations and award IDIQ
contracts to the successful, verified bidders. AR at 1114, 2154, 2645. If, after the evaluation
| What is the GSA responsible for verifying?
|
| Department components], to assist with the processing of [FOIA or Privacy Act] requests for
purposes of administrative expediency and efficiency.” Third Walter Decl. ¶ 3. Indeed, the
State Department’s declarant explains that these five State Department components, including
DS, “conduct their own FOIA/Privacy Act reviews and respond directly to requesters,” despite
| What is the identified purpose for assisting with processing FOIA or Privacy Act requests?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 2
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters