Object Detection
game
naruto
File size: 2,394 Bytes
55ffea4
 
 
 
 
 
 
 
 
 
 
 
 
01212a4
e164739
ebdeba8
 
 
73dac5b
 
 
ebdeba8
 
 
df81663
 
 
 
ebdeba8
 
937ea12
 
 
 
 
a5c831a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df81663
a5c831a
 
df81663
73dac5b
 
 
a5c831a
df81663
73dac5b
 
 
 
 
 
 
a5c831a
 
73dac5b
a5c831a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df81663
73dac5b
 
 
 
 
 
 
 
 
 
 
a5c831a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e164739
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: mit
datasets:
- ualerr/data_NAI_200_frames
- ualerr/data_NAI_842_frames
- ualerr/dataset_NAI_45_frames
metrics:
- precision
pipeline_tag: object-detection
tags:
- game
- naruto
---
#-------------------N-A-I-------------------

#
# 📚 Naruto Artificial inteligence
- NAI 45 imagens (Available for download and use)
- NAI 156 imagens (Available for download and use)
- NAI 845 imagens (train)
- NAI 2k imagens (train)

## index model

- [N-A-I 45 imagens](#N-A-I-45-imagens)
- [N-A-I 156 imagens](#N-A-I-156-imagens)
- [N-A-I 845 imagens](#N-A-I-845-imagens)
- [N-A-I 2k imagens](#N-A-I-2.228-imagens)

## index dataset
- https://huggingface.co/datasets/ualerr/dataset_NAI_45_frames/
- https://huggingface.co/datasets/ualerr/data_NAI_200_frames/
- https://huggingface.co/datasets/ualerr/data_NAI_842_frames/


#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# N-A-I 2.228 imagens
#
#
# N-A-I 845 imagens
- 


#
# N-A-I 156 imagens
- epochs: 20
- metrics/mAP50-95(B): 0.16716
- metrics/mAP50(B): 0.36526
- metrics/precision(B): 0.3872
- imgsz: 640px
- batch: 1
- Hardware for train: Quadro P600 2gb,16ram
- time in training 5h
- YOLOv8x Parameters 68 M
- DOWNLOAD IN https://huggingface.co/ualerr/N-A-I/tree/main/naruto_v2
#
## 📚Example of 156 imagens
![Alt Text](naruto_v2/output_video.gif)
#
## 📚Results
![Alt Text](naruto_v2/results.png)
#
#
## 📚Predict validation
- input 
![Alt Text](naruto_v2/val_batch0_pred.jpg)
- output
![Alt Text](naruto_v2/val_batch0_labels.jpg)
#
- input 
![Alt Text](naruto_v2/val_batch0_pred.jpg)
- output
![Alt Text](naruto_v2/val_batch0_labels.jpg)
#
#



# N-A-I 45 imagens
- epochs: 30
- metrics/mAP50-95(B): 0.3861
- metrics/mAP50(B): 0.62534
- metrics/precision(B): 0.73028
- imgsz: 640px
- batch: 16
- Hardware for train: 12cpu,16ram
- time in training: unknow
- YOLOv8n params: 3.2M	
- DOWNLOAD IN https://huggingface.co/ualerr/N-A-I/tree/main/naruto_v1
- 
## 📚Example of 45 imagens
![Alt Text](gif/output_video.gif)
#

## 📚Results
![Alt Text](naruto_v1/results.png)
#
#
## 📚Predict validation
- input 
![Alt Text](naruto_v1/val_batch0_pred.jpg)
- output
![Alt Text](naruto_v1/val_batch0_labels.jpg)

- input 
![Alt Text](naruto_v1/val_batch0_pred.jpg)
- output
![Alt Text](naruto_v1/val_batch0_labels.jpg)
#





- CREDITS:
- https://github.com/inteligenciamilgrau/treinando_yolov8
- https://github.com/ultralytics/ultralytics