File size: 13,827 Bytes
15837c2 775dded 15837c2 775dded 15837c2 775dded 3a15aeb 15837c2 3a15aeb 15837c2 3504078 15837c2 3504078 15837c2 3a15aeb 15837c2 3a15aeb 15837c2 3a15aeb 15837c2 b13fdfd 15837c2 775dded 15837c2 775dded 15837c2 3a15aeb 15837c2 3a15aeb 15837c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# -*- coding: utf-8 -*-
# handler.py — Rapid_ECG / PULSE-7B — Startup-load, Stabil ve DEBUG'li sürüm
# - Sunucu açılır açılmaz model yüklenir (cold start only once)
# - HF Endpoint sözleşmesi (EndpointHandler.load().__call__)
# - Yerel (HF_MODEL_DIR) → Hub (HF_MODEL_ID) yükleme sırası
# - Görsel sadece .preprocess() ile işlenir (process_images yok)
# - Vision tower kontrolü: mm_vision_tower veya vision_tower
# - IMAGE_TOKEN_INDEX kullanımı ve kapsamlı [DEBUG] logları
import os
import io
import sys
import base64
import subprocess
from typing import Any, Dict, Optional
import torch
from PIL import Image
import requests
# ===== LLaVA kütüphanesini garantiye al =====
def _ensure_llava(tag: str = "v1.2.0"):
try:
import llava # noqa
print("[DEBUG] LLaVA already available.")
return
except ImportError:
print(f"[DEBUG] LLaVA not found; installing (tag={tag}) ...")
subprocess.check_call([
sys.executable, "-m", "pip", "install",
f"git+https://github.com/haotian-liu/LLaVA@{tag}#egg=llava"
])
print("[DEBUG] LLaVA installed.")
_ensure_llava("v1.2.0")
# ===== LLaVA importları =====
from llava.conversation import conv_templates
from llava.constants import (
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_TOKEN_INDEX,
)
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path
# ---------- yardımcılar ----------
def _get_env(name: str, default: Optional[str] = None) -> Optional[str]:
v = os.getenv(name)
return v if v not in (None, "") else default
def _pick_device() -> torch.device:
if torch.cuda.is_available():
dev = torch.device("cuda")
elif torch.backends.mps.is_available():
dev = torch.device("mps")
else:
dev = torch.device("cpu")
print(f"[DEBUG] pick_device -> {dev}")
return dev
def _pick_dtype(device: torch.device):
if device.type == "cuda":
dt = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
dt = torch.float32
print(f"[DEBUG] pick_dtype({device}) -> {dt}")
return dt
def _is_probably_base64(s: str) -> bool:
s = s.strip()
if s.startswith("data:image"):
return True
allowed = set("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=\n\r")
return len(s) % 4 == 0 and all(c in allowed for c in s)
def _load_image_from_any(image_input: Any) -> Image.Image:
print(f"[DEBUG] _load_image_from_any type={type(image_input)}")
if isinstance(image_input, Image.Image):
return image_input.convert("RGB")
if isinstance(image_input, (bytes, bytearray)):
return Image.open(io.BytesIO(image_input)).convert("RGB")
if hasattr(image_input, "read"):
return Image.open(image_input).convert("RGB")
if isinstance(image_input, str):
s = image_input.strip()
if s.startswith("data:image"):
try:
_, b64 = s.split(",", 1)
data = base64.b64decode(b64)
return Image.open(io.BytesIO(data)).convert("RGB")
except Exception as e:
raise ValueError(f"Bad data URL: {e}")
if _is_probably_base64(s) and not s.startswith(("http://", "https://")):
try:
data = base64.b64decode(s)
return Image.open(io.BytesIO(data)).convert("RGB")
except Exception as e:
raise ValueError(f"Bad base64 image: {e}")
if s.startswith(("http://", "https://")):
resp = requests.get(s, timeout=20)
resp.raise_for_status()
return Image.open(io.BytesIO(resp.content)).convert("RGB")
# local path
return Image.open(s).convert("RGB")
raise ValueError(f"Unsupported image input type: {type(image_input)}")
def _get_conv_mode(model_name: str) -> str:
name = (model_name or "").lower()
if "llama-2" in name:
return "llava_llama_2"
if "mistral" in name:
return "mistral_instruct"
if "v1.6-34b" in name:
return "chatml_direct"
if "v1" in name or "pulse" in name:
return "llava_v1"
if "mpt" in name:
return "mpt"
return "llava_v0"
def _build_prompt_with_image(prompt: str, model_cfg) -> str:
# Kullanıcı image token eklediyse yeniden eklemeyelim
if DEFAULT_IMAGE_TOKEN in prompt or DEFAULT_IM_START_TOKEN in prompt:
return prompt
if getattr(model_cfg, "mm_use_im_start_end", False):
token = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
return f"{token}\n{prompt}"
return f"{DEFAULT_IMAGE_TOKEN}\n{prompt}"
def _resolve_model_path(model_dir_hint: Optional[str], default_dir: str = "/repository") -> str:
# Öncelik: HF_MODEL_DIR (yerel) -> ctor'dan gelen model_dir_hint -> default_dir
p = _get_env("HF_MODEL_DIR") or model_dir_hint or default_dir
p = os.path.abspath(p)
print(f"[DEBUG] resolved model path: {p}")
return p
# ---------- Endpoint Handler ----------
class EndpointHandler:
def __init__(self, model_dir: Optional[str] = None):
# DEBUG banner
print("🚀 Starting up PULSE-7B handler (startup load)...")
print("📝 Enhanced by Ubden® Team")
print(f"🔧 Python: {sys.version}")
print(f"🔧 PyTorch: {torch.__version__}")
try:
import transformers
print(f"🔧 Transformers: {transformers.__version__}")
except Exception as e:
print(f"[DEBUG] transformers import failed: {e}")
self.model_dir = model_dir
self.device = _pick_device()
self.dtype = _pick_dtype(self.device)
# Ortam ayarları (flash attn ipucu, zarar vermez)
os.environ.setdefault("ATTN_IMPLEMENTATION", "flash_attention_2")
os.environ.setdefault("FLASH_ATTENTION", "1")
print(f"[DEBUG] ATTN_IMPLEMENTATION={os.getenv('ATTN_IMPLEMENTATION')} FLASH_ATTENTION={os.getenv('FLASH_ATTENTION')}")
# Model/Tokenizer/ImageProcessor konteynerleri
self.model = None
self.tokenizer = None
self.image_processor = None
self.context_len = None
self.model_name = None
# ---- Modeli burada (startup’ta) yükle ----
try:
self._startup_load_model()
print("✅ Model loaded & ready in __init__")
except Exception as e:
print(f"💥 CRITICAL: model startup load failed: {e}")
raise
def _startup_load_model(self):
# Yerel dizin varsa onu kullan, yoksa hub
local_path = _resolve_model_path(self.model_dir)
use_local = os.path.isdir(local_path) and any(
os.path.exists(os.path.join(local_path, f))
for f in ("config.json", "tokenizer_config.json")
)
model_base = _get_env("HF_MODEL_BASE", None)
if use_local:
model_path = local_path
print(f"[DEBUG] loading model LOCALLY from: {model_path}")
else:
model_path = _get_env("HF_MODEL_ID", "PULSE-ECG/PULSE-7B")
print(f"[DEBUG] loading model from HUB: {model_path} (HF_MODEL_BASE={model_base})")
# ⬇️ FIX: LLaVA v1.2.0 imzası model_name parametresi istiyor
model_name = get_model_name_from_path(model_path)
print(f"[DEBUG] resolved model_name: {model_name}")
print("[DEBUG] calling load_pretrained_model ...")
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
model_path=model_path,
model_base=model_base,
model_name=model_name, # <-- gerekli parametre
load_8bit=False,
load_4bit=False,
device_map="auto",
device=self.device,
)
self.model_name = getattr(self.model.config, "name_or_path", str(model_path))
print(f"[DEBUG] model loaded: name={self.model_name}")
# Vision tower kontrolü (yeni/eskı alan adları)
vt = (
getattr(self.model.config, "mm_vision_tower", None)
or getattr(self.model.config, "vision_tower", None)
)
print(f"[DEBUG] vision tower: {vt}")
if self.image_processor is None or vt is None:
raise RuntimeError(
"[ERROR] Vision tower not loaded (mm_vision_tower/vision_tower None). "
"Yerel yükleme için HF_MODEL_DIR doğru klasörü göstermeli; "
"Hub için HF_MODEL_ID PULSE/LLaVA tabanlı olmalı (örn: 'PULSE-ECG/PULSE-7B')."
)
# Tokenizer güvenliği
try:
self.tokenizer.padding_side = "left"
if getattr(self.tokenizer, "pad_token_id", None) is None:
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
except Exception as e:
print(f"[DEBUG] tokenizer safety patch failed: {e}")
self.model.eval()
# HF inference toolkit load() yine çağıracağı için no-op
def load(self):
print("[DEBUG] load(): model is already initialized in __init__")
return True
@torch.inference_mode()
def __call__(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
print(f"[DEBUG] __call__ inputs keys={list(inputs.keys()) if hasattr(inputs,'keys') else 'N/A'}")
# HF {"inputs": {...}} sarmasını aç
if "inputs" in inputs and isinstance(inputs["inputs"], dict):
inputs = inputs["inputs"]
prompt = inputs.get("query") or inputs.get("prompt") or inputs.get("istem") or ""
image_in = inputs.get("image") or inputs.get("image_url") or inputs.get("img")
if not image_in:
return {"error": "Missing 'image' in payload"}
if not isinstance(prompt, str) or not prompt.strip():
return {"error": "Missing 'query'/'prompt' text"}
# Üretim parametreleri
temperature = float(inputs.get("temperature", 0.0))
top_p = float(inputs.get("top_p", 0.9))
max_new = int(inputs.get("max_new_tokens", inputs.get("max_tokens", 512)))
repetition_penalty = float(inputs.get("repetition_penalty", 1.0))
conv_mode_override = inputs.get("conv_mode") or _get_env("CONV_MODE", None)
# ---- Görsel yükle + preprocess
try:
image = _load_image_from_any(image_in)
print(f"[DEBUG] loaded image size={image.size}")
except Exception as e:
return {"error": f"Failed to load image: {e}"}
if self.image_processor is None:
return {"error": "image_processor is None; model not initialized properly (no vision tower)"}
try:
out = self.image_processor.preprocess(image, return_tensors="pt")
images_tensor = out["pixel_values"].to(self.device, dtype=self.dtype)
image_sizes = [image.size]
print(f"[DEBUG] preprocess OK; images_tensor.shape={images_tensor.shape}")
except Exception as e:
return {"error": f"Image preprocessing failed: {e}"}
# ---- Konuşma + prompt
mode = conv_mode_override or _get_conv_mode(self.model_name)
conv = (conv_templates.get(mode) or conv_templates[list(conv_templates.keys())[0]]).copy()
conv.append_message(conv.roles[0], _build_prompt_with_image(prompt.strip(), self.model.config))
conv.append_message(conv.roles[1], None)
full_prompt = conv.get_prompt()
print(f"[DEBUG] conv_mode={mode}; full_prompt_len={len(full_prompt)}")
# ---- Tokenization (IMAGE_TOKEN_INDEX ile)
try:
input_ids = tokenizer_image_token(
full_prompt, self.tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors="pt"
).unsqueeze(0).to(self.device)
print(f"[DEBUG] tokenizer_image_token OK; input_ids.shape={input_ids.shape}")
except Exception as e:
print(f"[DEBUG] tokenizer_image_token failed: {e}; fallback to plain tokenizer")
try:
toks = self.tokenizer([full_prompt], return_tensors="pt", padding=True, truncation=True)
input_ids = toks["input_ids"].to(self.device)
print(f"[DEBUG] plain tokenizer OK; input_ids.shape={input_ids.shape}")
except Exception as e2:
return {"error": f"Tokenization failed: {e} / {e2}"}
attention_mask = torch.ones_like(input_ids, device=self.device)
# ---- Generate
try:
print(f"[DEBUG] generate(max_new_tokens={max_new}, temp={temperature}, top_p={top_p}, rep={repetition_penalty})")
gen_ids = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
images=images_tensor,
image_sizes=image_sizes,
do_sample=(temperature > 0),
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new,
repetition_penalty=repetition_penalty,
use_cache=True,
)
print(f"[DEBUG] generate OK; gen_ids.shape={gen_ids.shape}")
except Exception as e:
return {"error": f"Generation failed: {e}"}
# ---- Decode (sadece yeni tokenlar)
try:
new_tokens = gen_ids[0, input_ids.shape[1]:]
text = self.tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
print(f"[DEBUG] decoded_text_len={len(text)}")
except Exception as e:
return {"error": f"Decode failed: {e}"}
return {
"generated_text": text,
"model": self.model_name,
"conv_mode": mode,
}
|