File size: 12,666 Bytes
9313c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
"""
PULSE-7B Handler Utilities
Ubden® Team - Performance monitoring and helper functions
"""
import time
import torch
import psutil
import logging
import os
import json
import requests
from typing import Dict, Any, Optional
from functools import wraps
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PerformanceMonitor:
"""Performance monitoring utilities for PULSE-7B handler"""
def __init__(self):
self.metrics = {
'total_requests': 0,
'successful_requests': 0,
'failed_requests': 0,
'image_url_requests': 0,
'base64_requests': 0,
'text_only_requests': 0,
'total_generation_time': 0.0,
'total_image_processing_time': 0.0
}
def log_request(self, request_type: str, success: bool,
generation_time: float = 0.0,
image_processing_time: float = 0.0):
"""Log request metrics"""
self.metrics['total_requests'] += 1
if success:
self.metrics['successful_requests'] += 1
else:
self.metrics['failed_requests'] += 1
if request_type == 'image_url':
self.metrics['image_url_requests'] += 1
elif request_type == 'base64':
self.metrics['base64_requests'] += 1
else:
self.metrics['text_only_requests'] += 1
self.metrics['total_generation_time'] += generation_time
self.metrics['total_image_processing_time'] += image_processing_time
def get_stats(self) -> Dict[str, Any]:
"""Get current performance statistics"""
total_requests = self.metrics['total_requests']
if total_requests == 0:
return self.metrics
success_rate = (self.metrics['successful_requests'] / total_requests) * 100
avg_generation_time = self.metrics['total_generation_time'] / total_requests
avg_image_processing_time = self.metrics['total_image_processing_time'] / max(
self.metrics['image_url_requests'] + self.metrics['base64_requests'], 1
)
return {
**self.metrics,
'success_rate_percent': round(success_rate, 2),
'avg_generation_time_seconds': round(avg_generation_time, 3),
'avg_image_processing_time_seconds': round(avg_image_processing_time, 3)
}
def reset_stats(self):
"""Reset all metrics"""
for key in self.metrics:
self.metrics[key] = 0 if isinstance(self.metrics[key], int) else 0.0
def timing_decorator(func):
"""Decorator to measure function execution time"""
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
try:
result = func(*args, **kwargs)
execution_time = time.time() - start_time
logger.info(f"{func.__name__} completed in {execution_time:.3f}s")
return result, execution_time
except Exception as e:
execution_time = time.time() - start_time
logger.error(f"{func.__name__} failed in {execution_time:.3f}s: {e}")
raise e
return wrapper
def get_system_info() -> Dict[str, Any]:
"""Get current system resource information"""
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
system_info = {
'cpu_usage_percent': cpu_percent,
'memory_total_gb': round(memory.total / (1024**3), 2),
'memory_used_gb': round(memory.used / (1024**3), 2),
'memory_available_gb': round(memory.available / (1024**3), 2),
'memory_usage_percent': memory.percent
}
# Add GPU info if available
if torch.cuda.is_available():
gpu_memory = torch.cuda.memory_stats()
system_info.update({
'gpu_available': True,
'gpu_memory_allocated_gb': round(
torch.cuda.memory_allocated() / (1024**3), 2
),
'gpu_memory_reserved_gb': round(
torch.cuda.memory_reserved() / (1024**3), 2
),
'gpu_device_name': torch.cuda.get_device_name(0)
})
else:
system_info['gpu_available'] = False
return system_info
def validate_image_input(image_input: str) -> Dict[str, Any]:
"""Validate image input and return metadata"""
if not image_input or not isinstance(image_input, str):
return {'valid': False, 'type': None, 'error': 'Invalid input type'}
# Check if URL
if image_input.startswith(('http://', 'https://')):
return {
'valid': True,
'type': 'url',
'length': len(image_input),
'domain': image_input.split('/')[2] if '/' in image_input else 'unknown'
}
# Check if base64
elif image_input.startswith('data:image/') or len(image_input) > 100:
is_data_url = image_input.startswith('data:')
base64_data = image_input
if is_data_url:
if 'base64,' in image_input:
base64_data = image_input.split('base64,')[1]
else:
return {'valid': False, 'type': 'base64', 'error': 'Invalid data URL format'}
# Estimate decoded size
estimated_size = len(base64_data) * 3 // 4
return {
'valid': True,
'type': 'base64',
'is_data_url': is_data_url,
'base64_length': len(base64_data),
'estimated_size_bytes': estimated_size,
'estimated_size_kb': round(estimated_size / 1024, 2)
}
return {'valid': False, 'type': None, 'error': 'Unrecognized format'}
def sanitize_parameters(parameters: Dict[str, Any]) -> Dict[str, Any]:
"""Sanitize and validate generation parameters"""
sanitized = {}
# Max new tokens
max_new_tokens = parameters.get('max_new_tokens', 512)
sanitized['max_new_tokens'] = max(1, min(max_new_tokens, 2048))
# Temperature
temperature = parameters.get('temperature', 0.2)
sanitized['temperature'] = max(0.01, min(temperature, 2.0))
# Top-p
top_p = parameters.get('top_p', 0.9)
sanitized['top_p'] = max(0.01, min(top_p, 1.0))
# Repetition penalty
repetition_penalty = parameters.get('repetition_penalty', 1.05)
sanitized['repetition_penalty'] = max(1.0, min(repetition_penalty, 2.0))
# Stop sequences
stop = parameters.get('stop', ['</s>'])
if isinstance(stop, str):
stop = [stop]
sanitized['stop'] = stop[:5] # Limit to 5 stop sequences
# Return full text
sanitized['return_full_text'] = bool(parameters.get('return_full_text', False))
# Do sample
sanitized['do_sample'] = bool(parameters.get('do_sample', sanitized['temperature'] > 0.01))
return sanitized
def create_health_check() -> Dict[str, Any]:
"""Create a health check response"""
try:
system_info = get_system_info()
health_status = {
'status': 'healthy',
'timestamp': time.time(),
'system': system_info,
'model': 'PULSE-7B',
'handler_version': '2.0.0',
'features': [
'image_url_support',
'base64_image_support',
'stop_sequences',
'parameter_validation',
'performance_monitoring'
]
}
# Check if system is under stress
if system_info['memory_usage_percent'] > 90:
health_status['warnings'] = ['High memory usage']
if system_info['cpu_usage_percent'] > 90:
health_status.setdefault('warnings', []).append('High CPU usage')
return health_status
except Exception as e:
return {
'status': 'unhealthy',
'timestamp': time.time(),
'error': str(e)
}
class DeepSeekClient:
"""DeepSeek API client for Turkish commentary"""
def __init__(self, api_key: Optional[str] = None):
self.api_key = api_key or os.getenv('deep_key') or os.getenv('DEEPSEEK_API_KEY')
self.base_url = "https://api.deepseek.com/v1/chat/completions"
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}" if self.api_key else ""
}
def is_available(self) -> bool:
"""Check if DeepSeek API is available"""
return bool(self.api_key)
def get_turkish_commentary(self, english_analysis: str, timeout: int = 30) -> Dict[str, Any]:
"""
Get Turkish commentary for English medical analysis
Args:
english_analysis: English medical analysis text
timeout: Request timeout in seconds
Returns:
Dict with success status and commentary
"""
if not self.is_available():
return {
"success": False,
"error": "DeepSeek API key not configured",
"comment_text": ""
}
try:
# Prepare the prompt for Turkish medical commentary
prompt = f"""Bu bir EKG sonucu klinik incelemesi. Aşağıdaki İngilizce medikal analizi Türkçe olarak yorumla ve hasta için anlaşılır bir dilde açıkla:
"{english_analysis}"
Lütfen:
1. Medikal terimleri Türkçe karşılıklarıyla açıkla
2. Hastanın anlayabileceği basit bir dille yaz
3. Gerekirse aciliyet durumu hakkında bilgi ver
4. Kısa ve net ol
Türkçe Yorum:"""
payload = {
"model": "deepseek-chat",
"messages": [
{
"role": "system",
"content": "Sen deneyimli bir kardiyolog doktorsun. EKG sonuçlarını Türkçe olarak hastalar için anlaşılır şekilde açıklıyorsun."
},
{
"role": "user",
"content": prompt
}
],
"temperature": 0.3,
"max_tokens": 500,
"stream": False
}
logger.info("🔄 DeepSeek API'ye Türkçe yorum için istek gönderiliyor...")
response = requests.post(
self.base_url,
headers=self.headers,
json=payload,
timeout=timeout
)
response.raise_for_status()
result = response.json()
if 'choices' in result and len(result['choices']) > 0:
comment_text = result['choices'][0]['message']['content'].strip()
# Clean up the response - remove "Türkçe Yorum:" prefix if present
if comment_text.startswith("Türkçe Yorum:"):
comment_text = comment_text[13:].strip()
logger.info("✅ DeepSeek'ten Türkçe yorum başarıyla alındı")
return {
"success": True,
"comment_text": comment_text,
"model": "deepseek-chat",
"tokens_used": result.get('usage', {}).get('total_tokens', 0)
}
else:
return {
"success": False,
"error": "DeepSeek API'den geçersiz yanıt",
"comment_text": ""
}
except requests.exceptions.Timeout:
logger.error("❌ DeepSeek API timeout")
return {
"success": False,
"error": "DeepSeek API timeout - istek zaman aşımına uğradı",
"comment_text": ""
}
except requests.exceptions.RequestException as e:
logger.error(f"❌ DeepSeek API request error: {e}")
return {
"success": False,
"error": f"DeepSeek API bağlantı hatası: {str(e)}",
"comment_text": ""
}
except Exception as e:
logger.error(f"❌ DeepSeek API unexpected error: {e}")
return {
"success": False,
"error": f"DeepSeek API beklenmeyen hata: {str(e)}",
"comment_text": ""
}
# Global instances
performance_monitor = PerformanceMonitor()
deepseek_client = DeepSeekClient()
|