Upload 16 files
Browse files- handler.py +133 -4
- working-handler.py +245 -0
handler.py
CHANGED
@@ -10,6 +10,23 @@ import base64
|
|
10 |
from io import BytesIO
|
11 |
from PIL import Image
|
12 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class EndpointHandler:
|
@@ -23,6 +40,28 @@ class EndpointHandler:
|
|
23 |
"""
|
24 |
print("🚀 Starting up PULSE-7B handler...")
|
25 |
print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Let's see what hardware we're working with
|
28 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -89,6 +128,19 @@ class EndpointHandler:
|
|
89 |
self.use_pipeline = None
|
90 |
else:
|
91 |
self.use_pipeline = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def process_image_input(self, image_input):
|
94 |
"""
|
@@ -128,6 +180,56 @@ class EndpointHandler:
|
|
128 |
|
129 |
return None
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
132 |
"""
|
133 |
Main processing function - where the magic happens!
|
@@ -154,7 +256,8 @@ class EndpointHandler:
|
|
154 |
|
155 |
if isinstance(inputs, dict):
|
156 |
# Dictionary input - check for text and image
|
157 |
-
|
|
|
158 |
|
159 |
# Check for image in various formats
|
160 |
image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
|
@@ -178,6 +281,9 @@ class EndpointHandler:
|
|
178 |
do_sample = parameters.get("do_sample", True)
|
179 |
repetition_penalty = parameters.get("repetition_penalty", 1.0)
|
180 |
|
|
|
|
|
|
|
181 |
# Using pipeline? Let's go!
|
182 |
if self.use_pipeline:
|
183 |
result = self.pipe(
|
@@ -192,9 +298,24 @@ class EndpointHandler:
|
|
192 |
|
193 |
# Pipeline returns a list, let's handle it
|
194 |
if isinstance(result, list) and len(result) > 0:
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
else:
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
# Manual generation mode
|
200 |
else:
|
@@ -233,7 +354,15 @@ class EndpointHandler:
|
|
233 |
clean_up_tokenization_spaces=True
|
234 |
)
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
except Exception as e:
|
239 |
error_msg = f"Something went wrong during generation: {str(e)}"
|
|
|
10 |
from io import BytesIO
|
11 |
from PIL import Image
|
12 |
import requests
|
13 |
+
import time
|
14 |
+
|
15 |
+
# Import utilities if available
|
16 |
+
try:
|
17 |
+
from utils import (
|
18 |
+
performance_monitor,
|
19 |
+
validate_image_input,
|
20 |
+
sanitize_parameters,
|
21 |
+
get_system_info,
|
22 |
+
create_health_check,
|
23 |
+
deepseek_client
|
24 |
+
)
|
25 |
+
UTILS_AVAILABLE = True
|
26 |
+
except ImportError:
|
27 |
+
UTILS_AVAILABLE = False
|
28 |
+
deepseek_client = None
|
29 |
+
print("⚠️ Utils module not found - performance monitoring and DeepSeek integration disabled")
|
30 |
|
31 |
|
32 |
class EndpointHandler:
|
|
|
40 |
"""
|
41 |
print("🚀 Starting up PULSE-7B handler...")
|
42 |
print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
|
43 |
+
import sys
|
44 |
+
print(f"🔧 Python version: {sys.version}")
|
45 |
+
print(f"🔧 PyTorch version: {torch.__version__}")
|
46 |
+
|
47 |
+
# Check transformers version
|
48 |
+
try:
|
49 |
+
import transformers
|
50 |
+
print(f"🔧 Transformers version: {transformers.__version__}")
|
51 |
+
|
52 |
+
# PULSE LLaVA works with transformers==4.37.2
|
53 |
+
if transformers.__version__ == "4.37.2":
|
54 |
+
print("✅ Using PULSE LLaVA compatible version (4.37.2)")
|
55 |
+
elif "dev" in transformers.__version__ or "git" in str(transformers.__version__):
|
56 |
+
print("⚠️ Using development version - may conflict with PULSE LLaVA")
|
57 |
+
else:
|
58 |
+
print("⚠️ Using different version - PULSE LLaVA prefers 4.37.2")
|
59 |
+
except Exception as e:
|
60 |
+
print(f"❌ Error checking transformers version: {e}")
|
61 |
+
|
62 |
+
print(f"🔧 CUDA available: {torch.cuda.is_available()}")
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
print(f"🔧 CUDA device: {torch.cuda.get_device_name(0)}")
|
65 |
|
66 |
# Let's see what hardware we're working with
|
67 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
128 |
self.use_pipeline = None
|
129 |
else:
|
130 |
self.use_pipeline = True
|
131 |
+
|
132 |
+
# Final status report
|
133 |
+
print("\n🔍 Model Loading Status Report:")
|
134 |
+
print(f" - use_pipeline: {self.use_pipeline}")
|
135 |
+
print(f" - model: {'✅ Loaded' if self.model is not None else '❌ None'}")
|
136 |
+
print(f" - processor: {'✅ Loaded' if self.processor is not None else '❌ None'}")
|
137 |
+
print(f" - tokenizer: {'✅ Loaded' if self.tokenizer is not None else '❌ None'}")
|
138 |
+
print(f" - pipe: {'✅ Loaded' if self.pipe is not None else '❌ None'}")
|
139 |
+
|
140 |
+
if all(x is None for x in [self.model, self.processor, self.tokenizer, self.pipe]):
|
141 |
+
print("💥 CRITICAL: No model components loaded successfully!")
|
142 |
+
else:
|
143 |
+
print("✅ At least one model component loaded successfully")
|
144 |
|
145 |
def process_image_input(self, image_input):
|
146 |
"""
|
|
|
180 |
|
181 |
return None
|
182 |
|
183 |
+
def add_turkish_commentary(self, response: Dict[str, Any], enable_commentary: bool, timeout: int = 30) -> Dict[str, Any]:
|
184 |
+
"""Add Turkish commentary to the response using DeepSeek API"""
|
185 |
+
if not enable_commentary:
|
186 |
+
return response
|
187 |
+
|
188 |
+
if not UTILS_AVAILABLE or not deepseek_client:
|
189 |
+
print("⚠️ DeepSeek client not available - skipping Turkish commentary")
|
190 |
+
response["commentary_status"] = "unavailable"
|
191 |
+
return response
|
192 |
+
|
193 |
+
if not deepseek_client.is_available():
|
194 |
+
print("⚠️ DeepSeek API key not configured - skipping Turkish commentary")
|
195 |
+
response["commentary_status"] = "api_key_missing"
|
196 |
+
return response
|
197 |
+
|
198 |
+
generated_text = response.get("generated_text", "")
|
199 |
+
if not generated_text:
|
200 |
+
print("⚠️ No generated text to comment on")
|
201 |
+
response["commentary_status"] = "no_text"
|
202 |
+
return response
|
203 |
+
|
204 |
+
print("🔄 DeepSeek ile Türkçe yorum ekleniyor...")
|
205 |
+
commentary_result = deepseek_client.get_turkish_commentary(generated_text, timeout)
|
206 |
+
|
207 |
+
if commentary_result["success"]:
|
208 |
+
response["comment_text"] = commentary_result["comment_text"]
|
209 |
+
response["commentary_model"] = commentary_result.get("model", "deepseek-chat")
|
210 |
+
response["commentary_tokens"] = commentary_result.get("tokens_used", 0)
|
211 |
+
response["commentary_status"] = "success"
|
212 |
+
print("✅ Türkçe yorum başarıyla eklendi")
|
213 |
+
else:
|
214 |
+
response["comment_text"] = ""
|
215 |
+
response["commentary_error"] = commentary_result["error"]
|
216 |
+
response["commentary_status"] = "failed"
|
217 |
+
print(f"❌ Türkçe yorum eklenemedi: {commentary_result['error']}")
|
218 |
+
|
219 |
+
return response
|
220 |
+
|
221 |
+
def health_check(self) -> Dict[str, Any]:
|
222 |
+
"""Health check endpoint"""
|
223 |
+
if UTILS_AVAILABLE:
|
224 |
+
return create_health_check()
|
225 |
+
else:
|
226 |
+
return {
|
227 |
+
'status': 'healthy',
|
228 |
+
'model': 'PULSE-7B',
|
229 |
+
'timestamp': time.time(),
|
230 |
+
'handler_version': '2.0.0'
|
231 |
+
}
|
232 |
+
|
233 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
234 |
"""
|
235 |
Main processing function - where the magic happens!
|
|
|
256 |
|
257 |
if isinstance(inputs, dict):
|
258 |
# Dictionary input - check for text and image
|
259 |
+
# Support query field (new) plus original text/prompt fields
|
260 |
+
text = inputs.get("query", inputs.get("text", inputs.get("prompt", str(inputs))))
|
261 |
|
262 |
# Check for image in various formats
|
263 |
image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
|
|
|
281 |
do_sample = parameters.get("do_sample", True)
|
282 |
repetition_penalty = parameters.get("repetition_penalty", 1.0)
|
283 |
|
284 |
+
# Check if Turkish commentary is requested (NEW FEATURE)
|
285 |
+
enable_turkish_commentary = parameters.get("enable_turkish_commentary", False) # Default false
|
286 |
+
|
287 |
# Using pipeline? Let's go!
|
288 |
if self.use_pipeline:
|
289 |
result = self.pipe(
|
|
|
298 |
|
299 |
# Pipeline returns a list, let's handle it
|
300 |
if isinstance(result, list) and len(result) > 0:
|
301 |
+
generated_text = result[0].get("generated_text", "")
|
302 |
+
|
303 |
+
# Create response
|
304 |
+
response = {"generated_text": generated_text}
|
305 |
+
|
306 |
+
# Add Turkish commentary if requested (NEW FEATURE)
|
307 |
+
if enable_turkish_commentary:
|
308 |
+
response = self.add_turkish_commentary(response, True)
|
309 |
+
|
310 |
+
return [response]
|
311 |
else:
|
312 |
+
response = {"generated_text": str(result)}
|
313 |
+
|
314 |
+
# Add Turkish commentary if requested (NEW FEATURE)
|
315 |
+
if enable_turkish_commentary:
|
316 |
+
response = self.add_turkish_commentary(response, True)
|
317 |
+
|
318 |
+
return [response]
|
319 |
|
320 |
# Manual generation mode
|
321 |
else:
|
|
|
354 |
clean_up_tokenization_spaces=True
|
355 |
)
|
356 |
|
357 |
+
# Create response
|
358 |
+
response = {"generated_text": generated_text}
|
359 |
+
|
360 |
+
# Add Turkish commentary if requested (NEW FEATURE)
|
361 |
+
if enable_turkish_commentary:
|
362 |
+
response = self.add_turkish_commentary(response, True)
|
363 |
+
|
364 |
+
return [response]
|
365 |
+
|
366 |
|
367 |
except Exception as e:
|
368 |
error_msg = f"Something went wrong during generation: {str(e)}"
|
working-handler.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
PULSE-7B Enhanced Handler
|
3 |
+
Ubden® Team - Edited by https://github.com/ck-cankurt
|
4 |
+
Support: Text, Image URLs, and Base64 encoded images
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from typing import Dict, List, Any
|
9 |
+
import base64
|
10 |
+
from io import BytesIO
|
11 |
+
from PIL import Image
|
12 |
+
import requests
|
13 |
+
|
14 |
+
|
15 |
+
class EndpointHandler:
|
16 |
+
def __init__(self, path=""):
|
17 |
+
"""
|
18 |
+
Hey there! Let's get this PULSE-7B model up and running.
|
19 |
+
We'll load it from the HuggingFace hub directly, so no worries about local files.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
path: Model directory path (we actually ignore this and load from HF hub)
|
23 |
+
"""
|
24 |
+
print("🚀 Starting up PULSE-7B handler...")
|
25 |
+
print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
|
26 |
+
|
27 |
+
# Let's see what hardware we're working with
|
28 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
print(f"🖥️ Running on: {self.device}")
|
30 |
+
|
31 |
+
try:
|
32 |
+
# First attempt - using pipeline (easiest and most stable way)
|
33 |
+
from transformers import pipeline
|
34 |
+
|
35 |
+
print("📦 Fetching model from HuggingFace Hub...")
|
36 |
+
self.pipe = pipeline(
|
37 |
+
"text-generation",
|
38 |
+
model="PULSE-ECG/PULSE-7B",
|
39 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
40 |
+
device=0 if torch.cuda.is_available() else -1,
|
41 |
+
trust_remote_code=True,
|
42 |
+
model_kwargs={
|
43 |
+
"low_cpu_mem_usage": True,
|
44 |
+
"use_safetensors": True
|
45 |
+
}
|
46 |
+
)
|
47 |
+
print("✅ Model loaded successfully via pipeline!")
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"⚠️ Pipeline didn't work out: {e}")
|
51 |
+
print("🔄 Let me try a different approach...")
|
52 |
+
|
53 |
+
try:
|
54 |
+
# Plan B - load model and tokenizer separately
|
55 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
56 |
+
|
57 |
+
# Get the tokenizer ready
|
58 |
+
print("📖 Setting up tokenizer...")
|
59 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
60 |
+
"PULSE-ECG/PULSE-7B",
|
61 |
+
trust_remote_code=True
|
62 |
+
)
|
63 |
+
|
64 |
+
# Load the model as Llama (it works, trust me!)
|
65 |
+
print("🧠 Loading the model as Llama...")
|
66 |
+
self.model = LlamaForCausalLM.from_pretrained(
|
67 |
+
"PULSE-ECG/PULSE-7B",
|
68 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
69 |
+
device_map="auto",
|
70 |
+
low_cpu_mem_usage=True,
|
71 |
+
trust_remote_code=True
|
72 |
+
)
|
73 |
+
|
74 |
+
# Quick fix for padding token if it's missing
|
75 |
+
if self.tokenizer.pad_token is None:
|
76 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
77 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
78 |
+
|
79 |
+
self.model.eval()
|
80 |
+
self.use_pipeline = False
|
81 |
+
print("✅ Model loaded successfully via direct loading!")
|
82 |
+
|
83 |
+
except Exception as e2:
|
84 |
+
print(f"😓 That didn't work either: {e2}")
|
85 |
+
# If all else fails, we'll handle it gracefully
|
86 |
+
self.pipe = None
|
87 |
+
self.model = None
|
88 |
+
self.tokenizer = None
|
89 |
+
self.use_pipeline = None
|
90 |
+
else:
|
91 |
+
self.use_pipeline = True
|
92 |
+
|
93 |
+
def process_image_input(self, image_input):
|
94 |
+
"""
|
95 |
+
Handle both URL and base64 image inputs like a champ!
|
96 |
+
|
97 |
+
Args:
|
98 |
+
image_input: Can be a URL string or base64 encoded image
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
PIL Image object or None if something goes wrong
|
102 |
+
"""
|
103 |
+
try:
|
104 |
+
# Check if it's a URL (starts with http/https)
|
105 |
+
if isinstance(image_input, str) and (image_input.startswith('http://') or image_input.startswith('https://')):
|
106 |
+
print(f"🌐 Fetching image from URL: {image_input[:50]}...")
|
107 |
+
response = requests.get(image_input, timeout=10)
|
108 |
+
response.raise_for_status()
|
109 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
110 |
+
print("✅ Image downloaded successfully!")
|
111 |
+
return image
|
112 |
+
|
113 |
+
# Must be base64 then
|
114 |
+
elif isinstance(image_input, str):
|
115 |
+
print("🔍 Decoding base64 image...")
|
116 |
+
# Remove the data URL prefix if it exists
|
117 |
+
if "base64," in image_input:
|
118 |
+
image_input = image_input.split("base64,")[1]
|
119 |
+
|
120 |
+
image_data = base64.b64decode(image_input)
|
121 |
+
image = Image.open(BytesIO(image_data)).convert('RGB')
|
122 |
+
print("✅ Image decoded successfully!")
|
123 |
+
return image
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
print(f"❌ Couldn't process the image: {e}")
|
127 |
+
return None
|
128 |
+
|
129 |
+
return None
|
130 |
+
|
131 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
132 |
+
"""
|
133 |
+
Main processing function - where the magic happens!
|
134 |
+
|
135 |
+
Args:
|
136 |
+
data: Input data with 'inputs' and optional 'parameters'
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
List with the generated response
|
140 |
+
"""
|
141 |
+
# Quick check - is our model ready?
|
142 |
+
if self.use_pipeline is None:
|
143 |
+
return [{
|
144 |
+
"generated_text": "Oops! Model couldn't load properly. Please check the deployment settings.",
|
145 |
+
"error": "Model initialization failed",
|
146 |
+
"handler": "Ubden® Team Enhanced Handler"
|
147 |
+
}]
|
148 |
+
|
149 |
+
try:
|
150 |
+
# Parse the inputs - flexible format support
|
151 |
+
inputs = data.get("inputs", "")
|
152 |
+
text = ""
|
153 |
+
image = None
|
154 |
+
|
155 |
+
if isinstance(inputs, dict):
|
156 |
+
# Dictionary input - check for text and image
|
157 |
+
text = inputs.get("text", inputs.get("prompt", str(inputs)))
|
158 |
+
|
159 |
+
# Check for image in various formats
|
160 |
+
image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
|
161 |
+
if image_input:
|
162 |
+
image = self.process_image_input(image_input)
|
163 |
+
if image:
|
164 |
+
# For now, we'll add a note about the image since we're text-only
|
165 |
+
text = f"[Image provided - {image.size[0]}x{image.size[1]} pixels] {text}"
|
166 |
+
else:
|
167 |
+
# Simple string input
|
168 |
+
text = str(inputs)
|
169 |
+
|
170 |
+
if not text:
|
171 |
+
return [{"generated_text": "Hey, I need some text to work with! Please provide an input."}]
|
172 |
+
|
173 |
+
# Get generation parameters with sensible defaults
|
174 |
+
parameters = data.get("parameters", {})
|
175 |
+
max_new_tokens = min(parameters.get("max_new_tokens", 256), 1024)
|
176 |
+
temperature = parameters.get("temperature", 0.7)
|
177 |
+
top_p = parameters.get("top_p", 0.95)
|
178 |
+
do_sample = parameters.get("do_sample", True)
|
179 |
+
repetition_penalty = parameters.get("repetition_penalty", 1.0)
|
180 |
+
|
181 |
+
# Using pipeline? Let's go!
|
182 |
+
if self.use_pipeline:
|
183 |
+
result = self.pipe(
|
184 |
+
text,
|
185 |
+
max_new_tokens=max_new_tokens,
|
186 |
+
temperature=temperature,
|
187 |
+
top_p=top_p,
|
188 |
+
do_sample=do_sample,
|
189 |
+
repetition_penalty=repetition_penalty,
|
190 |
+
return_full_text=False # Just the new stuff, not the input
|
191 |
+
)
|
192 |
+
|
193 |
+
# Pipeline returns a list, let's handle it
|
194 |
+
if isinstance(result, list) and len(result) > 0:
|
195 |
+
return [{"generated_text": result[0].get("generated_text", "")}]
|
196 |
+
else:
|
197 |
+
return [{"generated_text": str(result)}]
|
198 |
+
|
199 |
+
# Manual generation mode
|
200 |
+
else:
|
201 |
+
# Tokenize the input
|
202 |
+
encoded = self.tokenizer(
|
203 |
+
text,
|
204 |
+
return_tensors="pt",
|
205 |
+
truncation=True,
|
206 |
+
max_length=2048
|
207 |
+
)
|
208 |
+
|
209 |
+
input_ids = encoded["input_ids"].to(self.device)
|
210 |
+
attention_mask = encoded.get("attention_mask")
|
211 |
+
if attention_mask is not None:
|
212 |
+
attention_mask = attention_mask.to(self.device)
|
213 |
+
|
214 |
+
# Generate the response
|
215 |
+
with torch.no_grad():
|
216 |
+
outputs = self.model.generate(
|
217 |
+
input_ids,
|
218 |
+
attention_mask=attention_mask,
|
219 |
+
max_new_tokens=max_new_tokens,
|
220 |
+
temperature=temperature,
|
221 |
+
top_p=top_p,
|
222 |
+
do_sample=do_sample,
|
223 |
+
repetition_penalty=repetition_penalty,
|
224 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
225 |
+
eos_token_id=self.tokenizer.eos_token_id
|
226 |
+
)
|
227 |
+
|
228 |
+
# Decode only the new tokens (not the input)
|
229 |
+
generated_ids = outputs[0][input_ids.shape[-1]:]
|
230 |
+
generated_text = self.tokenizer.decode(
|
231 |
+
generated_ids,
|
232 |
+
skip_special_tokens=True,
|
233 |
+
clean_up_tokenization_spaces=True
|
234 |
+
)
|
235 |
+
|
236 |
+
return [{"generated_text": generated_text}]
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
error_msg = f"Something went wrong during generation: {str(e)}"
|
240 |
+
print(f"❌ {error_msg}")
|
241 |
+
return [{
|
242 |
+
"generated_text": "",
|
243 |
+
"error": error_msg,
|
244 |
+
"handler": "Ubden® Team Enhanced Handler"
|
245 |
+
}]
|