danielhanchen commited on
Commit
4ca652e
·
verified ·
1 Parent(s): 0097a62

Add files using upload-large-folder tool

Browse files
README.md CHANGED
@@ -1,59 +1,22 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-VL-72B-Instruct
 
 
3
  language:
4
  - en
5
- library_name: transformers
6
  pipeline_tag: image-text-to-text
7
- license: apache-2.0
8
  tags:
9
  - multimodal
10
- - qwen
11
- - qwen2
12
  - unsloth
13
- - transformers
14
- - vision
 
15
  ---
16
- <div>
17
- <p style="margin-bottom: 0;margin-top:0;">
18
- <em>View all of our uploaded models <a href="https://docs.unsloth.ai/get-started/all-our-models">here</em>
19
- </p>
20
- <div style="display: flex; gap: 5px; align-items: center;margin-top:0; ">
21
- <a href="https://github.com/unslothai/unsloth/">
22
- <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
23
- </a>
24
- <a href="https://discord.gg/unsloth">
25
- <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
26
- </a>
27
- <a href="https://docs.unsloth.ai/">
28
- <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
29
- </a>
30
- </div>
31
- <h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth</h2>
32
- </div>
33
- We have a free Google Colab Tesla T4 notebook for Qwen2-VL (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb
34
-
35
- ## ✨ Finetune for Free
36
-
37
- All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
38
-
39
- | Unsloth supports | Free Notebooks | Performance | Memory use |
40
- |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
41
- | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
42
- | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
43
- | **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
44
- | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
45
- | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
46
- | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
47
- | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
48
- | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
49
-
50
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
51
-
52
- - This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
53
- - This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
54
- - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
55
-
56
- # Qwen2.5-VL
57
 
58
  ## Introduction
59
 
@@ -81,13 +44,12 @@ We extend dynamic resolution to the temporal dimension by adopting dynamic FPS s
81
  <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
82
  <p>
83
 
84
-
85
  * **Streamlined and Efficient Vision Encoder**
86
 
87
  We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
88
 
89
 
90
- We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
91
 
92
 
93
 
@@ -95,50 +57,51 @@ We have three models with 3, 7 and 72 billion parameters. This repo contains the
95
 
96
  ### Image benchmark
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
- | Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B |**Qwen2.5-VL-7B** |
100
- | :--- | :---: | :---: | :---: | :---: | :---: |
101
- | MMMU<sub>val</sub> | 56 | 50.4 | **60**| 54.1 | 58.6|
102
- | MMMU-Pro<sub>val</sub> | 34.3 | - | 37.6| 30.5 | 41.0|
103
- | DocVQA<sub>test</sub> | 93 | 93 | - | 94.5 | **95.7** |
104
- | InfoVQA<sub>test</sub> | 77.6 | - | - |76.5 | **82.6** |
105
- | ChartQA<sub>test</sub> | 84.8 | - |- | 83.0 |**87.3** |
106
- | TextVQA<sub>val</sub> | 79.1 | 80.1 | -| 84.3 | **84.9**|
107
- | OCRBench | 822 | 852 | 785 | 845 | **864** |
108
- | CC_OCR | 57.7 | | | 61.6 | **77.8**|
109
- | MMStar | 62.8| | |60.7| **63.9**|
110
- | MMBench-V1.1-En<sub>test</sub> | 79.4 | 78.0 | 76.0| 80.7 | **82.6** |
111
- | MMT-Bench<sub>test</sub> | - | - | - |**63.7** |63.6 |
112
- | MMStar | **61.5** | 57.5 | 54.8 | 60.7 |63.9 |
113
- | MMVet<sub>GPT-4-Turbo</sub> | 54.2 | 60.0 | 66.9 | 62.0 | **67.1**|
114
- | HallBench<sub>avg</sub> | 45.2 | 48.1 | 46.1| 50.6 | **52.9**|
115
- | MathVista<sub>testmini</sub> | 58.3 | 60.6 | 52.4 | 58.2 | **68.2**|
116
- | MathVision | - | - | - | 16.3 | **25.07** |
117
-
118
- ### Video Benchmarks
119
-
120
- | Benchmark | Qwen2-VL-7B | **Qwen2.5-VL-7B** |
121
- | :--- | :---: | :---: |
122
- | MVBench | 67.0 | **69.6** |
123
- | PerceptionTest<sub>test</sub> | 66.9 | **70.5** |
124
- | Video-MME<sub>wo/w subs</sub> | 63.3/69.0 | **65.1**/**71.6** |
125
- | LVBench | | 45.3 |
126
- | LongVideoBench | | 54.7 |
127
- | MMBench-Video | 1.44 | 1.79 |
128
- | TempCompass | | 71.7 |
129
- | MLVU | | 70.2 |
130
- | CharadesSTA/mIoU | 43.6|
131
 
132
  ### Agent benchmark
133
- | Benchmarks | Qwen2.5-VL-7B |
134
- |-------------------------|---------------|
135
- | ScreenSpot | 84.7 |
136
- | ScreenSpot Pro | 29.0 |
137
- | AITZ_EM | 81.9 |
138
- | Android Control High_EM | 60.1 |
139
- | Android Control Low_EM | 93.7 |
140
- | AndroidWorld_SR | 25.5 |
141
- | MobileMiniWob++_SR | 91.4 |
 
 
 
142
 
143
  ## Requirements
144
  The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
@@ -184,25 +147,25 @@ from qwen_vl_utils import process_vision_info
184
 
185
  # default: Load the model on the available device(s)
186
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
187
- "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
188
  )
189
 
190
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
191
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
192
- # "Qwen/Qwen2.5-VL-7B-Instruct",
193
  # torch_dtype=torch.bfloat16,
194
  # attn_implementation="flash_attention_2",
195
  # device_map="auto",
196
  # )
197
 
198
  # default processer
199
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
200
 
201
  # The default range for the number of visual tokens per image in the model is 4-16384.
202
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
203
  # min_pixels = 256*28*28
204
  # max_pixels = 1280*28*28
205
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
206
 
207
  messages = [
208
  {
@@ -471,7 +434,7 @@ The model supports a wide range of resolution inputs. By default, it uses the na
471
  min_pixels = 256 * 28 * 28
472
  max_pixels = 1280 * 28 * 28
473
  processor = AutoProcessor.from_pretrained(
474
- "Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
475
  )
476
  ```
477
 
@@ -521,6 +484,7 @@ To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://ar
521
 
522
  For supported frameworks, you could add the following to `config.json` to enable YaRN:
523
 
 
524
  {
525
  ...,
526
  "type": "yarn",
@@ -532,6 +496,7 @@ For supported frameworks, you could add the following to `config.json` to enable
532
  "factor": 4,
533
  "original_max_position_embeddings": 32768
534
  }
 
535
 
536
  However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.
537
 
@@ -539,7 +504,6 @@ At the same time, for long video inputs, since MRoPE itself is more economical w
539
 
540
 
541
 
542
-
543
  ## Citation
544
 
545
  If you find our work helpful, feel free to give us a cite.
@@ -567,4 +531,3 @@ If you find our work helpful, feel free to give us a cite.
567
  year={2023}
568
  }
569
  ```
570
-
 
1
  ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct/blob/main/LICENSE
5
  language:
6
  - en
 
7
  pipeline_tag: image-text-to-text
 
8
  tags:
9
  - multimodal
 
 
10
  - unsloth
11
+ library_name: transformers
12
+ base_model:
13
+ - Qwen/Qwen2.5-VL-72B-Instruct
14
  ---
15
+
16
+ # Qwen2.5-VL-72B-Instruct
17
+ <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
18
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
19
+ </a>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ## Introduction
22
 
 
44
  <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
45
  <p>
46
 
 
47
  * **Streamlined and Efficient Vision Encoder**
48
 
49
  We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
50
 
51
 
52
+ We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 72B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
53
 
54
 
55
 
 
57
 
58
  ### Image benchmark
59
 
60
+ | Benchmarks | GPT4o | Claude3.5 Sonnet | Gemini-2-flash | InternVL2.5-78B | Qwen2-VL-72B | Qwen2.5-VL-72B |
61
+ |-----------------------|-----------|-------------------|-----------------|-----------------|--------------|----------------|
62
+ | MMMU<sub>val</sub> | 70.3 | 70.4 | 70.7 | 70.1 | 64.5 | 70.2 |
63
+ | MMMU_Pro | 54.5 | 54.7 | 57.0 | 48.6 | 46.2 | 51.1 |
64
+ | MathVista_MINI | 63.8 | 65.4 | 73.1 | 76.6 | 70.5 | 74.8 |
65
+ | MathVision_FULL | 30.4 | 38.3 | 41.3 | 32.2 | 25.9 | 38.1 |
66
+ | Hallusion Bench | 55.0 | 55.16 | | 57.4 | 58.1 | 55.16 |
67
+ | MMBench_DEV_EN_V11 | 82.1 | 83.4 | 83.0 | 88.5 | 86.6 | 88 |
68
+ | AI2D_TEST | 84.6 | 81.2 | | 89.1 | 88.1 | 88.4 |
69
+ | ChartQA_TEST | 86.7 | 90.8 | 85.2 | 88.3 | 88.3 | 89.5 |
70
+ | DocVQA_VAL | 91.1 | 95.2 | 92.1 | 96.5 | 96.1 | 96.4 |
71
+ | MMStar | 64.7 | 65.1 | 69.4 | 69.5 | 68.3 | 70.8 |
72
+ | MMVet_turbo | 69.1 | 70.1 | | 72.3 | 74.0 | 76.19 |
73
+ | OCRBench | 736 | 788 | | 854 | 877 | 885 |
74
+ | OCRBench-V2(en/zh) | 46.5/32.3 | 45.2/39.6 | 51.9/43.1 | 45/46.2 | 47.8/46.1 | 61.5/63.7 |
75
+ | CC-OCR | 66.6 | 62.7 | 73.0 | 64.7 | 68.7 |79.8 |
76
+
77
+
78
+ ### Video benchmark
79
+ | Benchmarks | GPT4o | Gemini-1.5-Pro | InternVL2.5-78B | Qwen2VL-72B | Qwen2.5VL-72B |
80
+ |---------------------|-------|----------------|-----------------|-------------|---------------|
81
+ | VideoMME w/o sub. | 71.9 | 75.0 | 72.1 | 71.2 | 73.3 |
82
+ | VideoMME w sub. | 77.2 | 81.3 | 74.0 | 77.8 | 79.1 |
83
+ | MVBench | 64.6 | 60.5 | 76.4 | 73.6 | 70.4 |
84
+ | MMBench-Video | 1.63 | 1.30 | 1.97 | 1.70 | 2.02 |
85
+ | LVBench | 30.8 | 33.1 | - | 41.3 | 47.3 |
86
+ | EgoSchema | 72.2 | 71.2 | - | 77.9 | 76.2 |
87
+ | PerceptionTest_test | - | - | - | 68.0 | 73.2 |
88
+ | MLVU_M-Avg_dev | 64.6 | - | 75.7 | | 74.6 |
89
+ | TempCompass_overall | 73.8 | - | - | | 74.8 |
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  ### Agent benchmark
93
+
94
+ | Benchmarks | GPT4o | Gemini 2.0 | Claude | Aguvis-72B | Qwen2VL-72B | Qwen2.5VL-72B |
95
+ |-------------------------|-------------|------------|--------|------------|-------------|---------------|
96
+ | ScreenSpot | 18.1 | 84.0 | 83.0 | | | 87.1 |
97
+ | ScreenSpot Pro | | | 17.1 | | 1.6 | 43.6 |
98
+ | AITZ_EM | 35.3 | | | | 72.8 | 83.2 |
99
+ | Android Control High_EM | | | | 66.4 | 59.1 | 67.36 |
100
+ | Android Control Low_EM | | | | 84.4 | 59.2 | 93.7 |
101
+ | AndroidWorld_SR | 34.5% (SoM) | | 27.9% | 26.1% | | 35% |
102
+ | MobileMiniWob++_SR | | | | 66% | | 68% |
103
+ | OSWorld | | | 14.90 | 10.26 | | 8.83 |
104
+
105
 
106
  ## Requirements
107
  The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
 
147
 
148
  # default: Load the model on the available device(s)
149
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
150
+ "Qwen/Qwen2.5-VL-72B-Instruct", torch_dtype="auto", device_map="auto"
151
  )
152
 
153
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
154
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
155
+ # "Qwen/Qwen2.5-VL-72B-Instruct",
156
  # torch_dtype=torch.bfloat16,
157
  # attn_implementation="flash_attention_2",
158
  # device_map="auto",
159
  # )
160
 
161
  # default processer
162
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct")
163
 
164
  # The default range for the number of visual tokens per image in the model is 4-16384.
165
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
166
  # min_pixels = 256*28*28
167
  # max_pixels = 1280*28*28
168
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
169
 
170
  messages = [
171
  {
 
434
  min_pixels = 256 * 28 * 28
435
  max_pixels = 1280 * 28 * 28
436
  processor = AutoProcessor.from_pretrained(
437
+ "Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
438
  )
439
  ```
440
 
 
484
 
485
  For supported frameworks, you could add the following to `config.json` to enable YaRN:
486
 
487
+ ```json
488
  {
489
  ...,
490
  "type": "yarn",
 
496
  "factor": 4,
497
  "original_max_position_embeddings": 32768
498
  }
499
+ ```
500
 
501
  However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.
502
 
 
504
 
505
 
506
 
 
507
  ## Citation
508
 
509
  If you find our work helpful, feel free to give us a cite.
 
531
  year={2023}
532
  }
533
  ```
 
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
config.json CHANGED
@@ -1,5 +1,4 @@
1
  {
2
- "_name_or_path": "Qwen/Qwen2.5-VL-72B-Instruct",
3
  "architectures": [
4
  "Qwen2_5_VLForConditionalGeneration"
5
  ],
@@ -10,7 +9,7 @@
10
  "image_token_id": 151655,
11
  "initializer_range": 0.02,
12
  "intermediate_size": 29568,
13
- "max_position_embeddings": 32768,
14
  "max_window_layers": 80,
15
  "model_type": "qwen2_5_vl",
16
  "num_attention_heads": 64,
@@ -29,22 +28,76 @@
29
  },
30
  "rope_theta": 1000000.0,
31
  "sliding_window": 32768,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  "tie_word_embeddings": false,
33
  "torch_dtype": "bfloat16",
34
- "transformers_version": "4.49.0",
35
  "unsloth_fixed": true,
36
  "use_cache": true,
37
  "use_sliding_window": false,
38
  "video_token_id": 151656,
39
  "vision_config": {
 
 
 
 
 
 
 
 
40
  "hidden_size": 1280,
 
41
  "in_chans": 3,
 
42
  "intermediate_size": 3456,
43
  "model_type": "qwen2_5_vl",
 
44
  "out_hidden_size": 8192,
 
 
45
  "spatial_patch_size": 14,
 
46
  "tokens_per_second": 2,
47
- "torch_dtype": "bfloat16"
 
48
  },
49
  "vision_end_token_id": 151653,
50
  "vision_start_token_id": 151652,
 
1
  {
 
2
  "architectures": [
3
  "Qwen2_5_VLForConditionalGeneration"
4
  ],
 
9
  "image_token_id": 151655,
10
  "initializer_range": 0.02,
11
  "intermediate_size": 29568,
12
+ "max_position_embeddings": 128000,
13
  "max_window_layers": 80,
14
  "model_type": "qwen2_5_vl",
15
  "num_attention_heads": 64,
 
28
  },
29
  "rope_theta": 1000000.0,
30
  "sliding_window": 32768,
31
+ "text_config": {
32
+ "architectures": [
33
+ "Qwen2_5_VLForConditionalGeneration"
34
+ ],
35
+ "attention_dropout": 0.0,
36
+ "bos_token_id": 151643,
37
+ "eos_token_id": 151645,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 8192,
40
+ "image_token_id": null,
41
+ "initializer_range": 0.02,
42
+ "intermediate_size": 29568,
43
+ "max_position_embeddings": 128000,
44
+ "max_window_layers": 80,
45
+ "model_type": "qwen2_5_vl_text",
46
+ "num_attention_heads": 64,
47
+ "num_hidden_layers": 80,
48
+ "num_key_value_heads": 8,
49
+ "rms_norm_eps": 1e-06,
50
+ "rope_scaling": {
51
+ "mrope_section": [
52
+ 16,
53
+ 24,
54
+ 24
55
+ ],
56
+ "rope_type": "default",
57
+ "type": "default"
58
+ },
59
+ "rope_theta": 1000000.0,
60
+ "sliding_window": 32768,
61
+ "torch_dtype": "bfloat16",
62
+ "use_cache": true,
63
+ "use_sliding_window": false,
64
+ "video_token_id": null,
65
+ "vision_end_token_id": 151653,
66
+ "vision_start_token_id": 151652,
67
+ "vision_token_id": 151654,
68
+ "vocab_size": 152064
69
+ },
70
  "tie_word_embeddings": false,
71
  "torch_dtype": "bfloat16",
72
+ "transformers_version": "4.52.0.dev0",
73
  "unsloth_fixed": true,
74
  "use_cache": true,
75
  "use_sliding_window": false,
76
  "video_token_id": 151656,
77
  "vision_config": {
78
+ "depth": 32,
79
+ "fullatt_block_indexes": [
80
+ 7,
81
+ 15,
82
+ 23,
83
+ 31
84
+ ],
85
+ "hidden_act": "silu",
86
  "hidden_size": 1280,
87
+ "in_channels": 3,
88
  "in_chans": 3,
89
+ "initializer_range": 0.02,
90
  "intermediate_size": 3456,
91
  "model_type": "qwen2_5_vl",
92
+ "num_heads": 16,
93
  "out_hidden_size": 8192,
94
+ "patch_size": 14,
95
+ "spatial_merge_size": 2,
96
  "spatial_patch_size": 14,
97
+ "temporal_patch_size": 2,
98
  "tokens_per_second": 2,
99
+ "torch_dtype": "bfloat16",
100
+ "window_size": 112
101
  },
102
  "vision_end_token_id": 151653,
103
  "vision_start_token_id": 151652,
generation_config.json CHANGED
@@ -5,10 +5,9 @@
5
  151645,
6
  151643
7
  ],
8
- "max_length": 32768,
9
  "pad_token_id": 151654,
10
  "repetition_penalty": 1.05,
11
- "top_k": 1,
12
- "top_p": 0.001,
13
- "transformers_version": "4.49.0"
14
  }
 
5
  151645,
6
  151643
7
  ],
8
+ "max_length": 128000,
9
  "pad_token_id": 151654,
10
  "repetition_penalty": 1.05,
11
+ "temperature": 1e-06,
12
+ "transformers_version": "4.52.0.dev0"
 
13
  }
tokenizer_config.json CHANGED
@@ -195,16 +195,16 @@
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
198
- "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
  "clean_up_tokenization_spaces": false,
200
  "eos_token": "<|im_end|>",
201
  "errors": "replace",
202
  "extra_special_tokens": {},
203
- "model_max_length": 32768,
204
  "pad_token": "<|vision_pad|>",
205
  "padding_side": "left",
206
  "processor_class": "Qwen2_5_VLProcessor",
207
  "split_special_tokens": false,
208
  "tokenizer_class": "Qwen2Tokenizer",
209
- "unk_token": null
210
- }
 
 
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
 
198
  "clean_up_tokenization_spaces": false,
199
  "eos_token": "<|im_end|>",
200
  "errors": "replace",
201
  "extra_special_tokens": {},
202
+ "model_max_length": 128000,
203
  "pad_token": "<|vision_pad|>",
204
  "padding_side": "left",
205
  "processor_class": "Qwen2_5_VLProcessor",
206
  "split_special_tokens": false,
207
  "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null,
209
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
210
+ }