Upload tbiodeg AttentiveFP model
Browse files- README.md +187 -0
- config.json +22 -0
- inference.py +127 -0
- pytorch_model.pt +3 -0
- requirements.txt +4 -0
README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- chemistry
|
5 |
+
- molecular-property-prediction
|
6 |
+
- graph-neural-networks
|
7 |
+
- attentivefp
|
8 |
+
- pytorch-geometric
|
9 |
+
- toxicity-prediction
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: tabular-regression
|
13 |
+
---
|
14 |
+
|
15 |
+
# Pyrosage tbiodeg AttentiveFP Model
|
16 |
+
|
17 |
+
## Model Description
|
18 |
+
|
19 |
+
This is an AttentiveFP (Attention-based Fingerprint) Graph Neural Network model trained for tbiodeg regression from the Pyrosage project. The model predicts molecular properties directly from SMILES strings using graph neural networks.
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
- **Model Type**: AttentiveFP (Graph Neural Network)
|
24 |
+
- **Task**: Regression
|
25 |
+
- **Input**: SMILES strings (molecular representations)
|
26 |
+
- **Output**: Continuous numerical value
|
27 |
+
- **Framework**: PyTorch Geometric
|
28 |
+
- **Architecture**: AttentiveFP with enhanced atom and bond features
|
29 |
+
|
30 |
+
### Hyperparameters
|
31 |
+
|
32 |
+
```json
|
33 |
+
{
|
34 |
+
"name": "baseline",
|
35 |
+
"hidden_channels": 64,
|
36 |
+
"num_layers": 2,
|
37 |
+
"num_timesteps": 2,
|
38 |
+
"dropout": 0.2,
|
39 |
+
"learning_rate": 0.001,
|
40 |
+
"weight_decay": 1e-05,
|
41 |
+
"batch_size": 32,
|
42 |
+
"epochs": 50,
|
43 |
+
"patience": 10
|
44 |
+
}
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
### Installation
|
50 |
+
|
51 |
+
```bash
|
52 |
+
pip install torch torch-geometric rdkit-pypi
|
53 |
+
```
|
54 |
+
|
55 |
+
### Loading the Model
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
from torch_geometric.nn import AttentiveFP
|
60 |
+
from rdkit import Chem
|
61 |
+
from torch_geometric.data import Data
|
62 |
+
|
63 |
+
# Load the model
|
64 |
+
model_dict = torch.load('pytorch_model.pt', map_location='cpu')
|
65 |
+
state_dict = model_dict['model_state_dict']
|
66 |
+
hyperparams = model_dict['hyperparameters']
|
67 |
+
|
68 |
+
# Create model with correct architecture
|
69 |
+
model = AttentiveFP(
|
70 |
+
in_channels=10, # Enhanced atom features
|
71 |
+
hidden_channels=hyperparams["hidden_channels"],
|
72 |
+
out_channels=1,
|
73 |
+
edge_dim=6, # Enhanced bond features
|
74 |
+
num_layers=hyperparams["num_layers"],
|
75 |
+
num_timesteps=hyperparams["num_timesteps"],
|
76 |
+
dropout=hyperparams["dropout"],
|
77 |
+
)
|
78 |
+
|
79 |
+
model.load_state_dict(state_dict)
|
80 |
+
model.eval()
|
81 |
+
```
|
82 |
+
|
83 |
+
### Making Predictions
|
84 |
+
|
85 |
+
```python
|
86 |
+
def smiles_to_data(smiles):
|
87 |
+
"""Convert SMILES string to PyG Data object"""
|
88 |
+
mol = Chem.MolFromSmiles(smiles)
|
89 |
+
if mol is None:
|
90 |
+
return None
|
91 |
+
|
92 |
+
# Enhanced atom features (10 dimensions)
|
93 |
+
atom_features = []
|
94 |
+
for atom in mol.GetAtoms():
|
95 |
+
features = [
|
96 |
+
atom.GetAtomicNum(),
|
97 |
+
atom.GetTotalDegree(),
|
98 |
+
atom.GetFormalCharge(),
|
99 |
+
atom.GetTotalNumHs(),
|
100 |
+
atom.GetNumRadicalElectrons(),
|
101 |
+
int(atom.GetIsAromatic()),
|
102 |
+
int(atom.IsInRing()),
|
103 |
+
# Hybridization as one-hot (3 dimensions)
|
104 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP),
|
105 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP2),
|
106 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP3)
|
107 |
+
]
|
108 |
+
atom_features.append(features)
|
109 |
+
|
110 |
+
x = torch.tensor(atom_features, dtype=torch.float)
|
111 |
+
|
112 |
+
# Enhanced bond features (6 dimensions)
|
113 |
+
edges_list = []
|
114 |
+
edge_features = []
|
115 |
+
for bond in mol.GetBonds():
|
116 |
+
i = bond.GetBeginAtomIdx()
|
117 |
+
j = bond.GetEndAtomIdx()
|
118 |
+
edges_list.extend([[i, j], [j, i]])
|
119 |
+
|
120 |
+
features = [
|
121 |
+
# Bond type as one-hot (4 dimensions)
|
122 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.SINGLE),
|
123 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.DOUBLE),
|
124 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.TRIPLE),
|
125 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.AROMATIC),
|
126 |
+
# Additional features (2 dimensions)
|
127 |
+
int(bond.GetIsConjugated()),
|
128 |
+
int(bond.IsInRing())
|
129 |
+
]
|
130 |
+
edge_features.extend([features, features])
|
131 |
+
|
132 |
+
if not edges_list:
|
133 |
+
return None
|
134 |
+
|
135 |
+
edge_index = torch.tensor(edges_list, dtype=torch.long).t()
|
136 |
+
edge_attr = torch.tensor(edge_features, dtype=torch.float)
|
137 |
+
|
138 |
+
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
|
139 |
+
|
140 |
+
def predict(model, smiles):
|
141 |
+
"""Make prediction for a SMILES string"""
|
142 |
+
data = smiles_to_data(smiles)
|
143 |
+
if data is None:
|
144 |
+
return None
|
145 |
+
|
146 |
+
batch = torch.zeros(data.num_nodes, dtype=torch.long)
|
147 |
+
with torch.no_grad():
|
148 |
+
output = model(data.x, data.edge_index, data.edge_attr, batch)
|
149 |
+
return output.item()
|
150 |
+
|
151 |
+
# Example usage
|
152 |
+
smiles = "CC(=O)OC1=CC=CC=C1C(=O)O" # Aspirin
|
153 |
+
prediction = predict(model, smiles)
|
154 |
+
print(f"Prediction for {smiles}: {prediction}")
|
155 |
+
```
|
156 |
+
|
157 |
+
## Training Data
|
158 |
+
|
159 |
+
The model was trained on the tbiodeg dataset from the Pyrosage project, which focuses on molecular toxicity and environmental property prediction.
|
160 |
+
|
161 |
+
## Model Performance
|
162 |
+
|
163 |
+
See training logs for detailed performance metrics.
|
164 |
+
|
165 |
+
## Limitations
|
166 |
+
|
167 |
+
- The model is trained on specific chemical datasets and may not generalize to all molecular types
|
168 |
+
- Performance may vary for molecules significantly different from the training distribution
|
169 |
+
- Requires proper SMILES string format for input
|
170 |
+
|
171 |
+
## Citation
|
172 |
+
|
173 |
+
If you use this model, please cite the Pyrosage project:
|
174 |
+
|
175 |
+
```bibtex
|
176 |
+
@misc{pyrosagetbiodeg,
|
177 |
+
title={Pyrosage tbiodeg AttentiveFP Model},
|
178 |
+
author={UPCI NTUA},
|
179 |
+
year={2025},
|
180 |
+
publisher={Hugging Face},
|
181 |
+
url={https://huggingface.co/upci-ntua/pyrosage-tbiodeg-attentivefp}
|
182 |
+
}
|
183 |
+
```
|
184 |
+
|
185 |
+
## License
|
186 |
+
|
187 |
+
MIT License - see LICENSE file for details.
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "AttentiveFP",
|
3 |
+
"task_type": "regression",
|
4 |
+
"endpoint": "tbiodeg",
|
5 |
+
"hyperparameters": {
|
6 |
+
"name": "baseline",
|
7 |
+
"hidden_channels": 64,
|
8 |
+
"num_layers": 2,
|
9 |
+
"num_timesteps": 2,
|
10 |
+
"dropout": 0.2,
|
11 |
+
"learning_rate": 0.001,
|
12 |
+
"weight_decay": 1e-05,
|
13 |
+
"batch_size": 32,
|
14 |
+
"epochs": 50,
|
15 |
+
"patience": 10
|
16 |
+
},
|
17 |
+
"input_features": {
|
18 |
+
"atom_features": 10,
|
19 |
+
"bond_features": 6
|
20 |
+
},
|
21 |
+
"framework": "pytorch_geometric"
|
22 |
+
}
|
inference.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Standalone inference script for Pyrosage tbiodeg AttentiveFP Model
|
4 |
+
Usage: python inference.py "SMILES_STRING"
|
5 |
+
"""
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import torch
|
9 |
+
from torch_geometric.nn import AttentiveFP
|
10 |
+
from rdkit import Chem
|
11 |
+
from torch_geometric.data import Data
|
12 |
+
|
13 |
+
|
14 |
+
def smiles_to_data(smiles):
|
15 |
+
"""Convert SMILES string to PyG Data object with enhanced features"""
|
16 |
+
mol = Chem.MolFromSmiles(smiles)
|
17 |
+
if mol is None:
|
18 |
+
return None
|
19 |
+
|
20 |
+
# Enhanced atom features (10 dimensions)
|
21 |
+
atom_features = []
|
22 |
+
for atom in mol.GetAtoms():
|
23 |
+
features = [
|
24 |
+
atom.GetAtomicNum(),
|
25 |
+
atom.GetTotalDegree(),
|
26 |
+
atom.GetFormalCharge(),
|
27 |
+
atom.GetTotalNumHs(),
|
28 |
+
atom.GetNumRadicalElectrons(),
|
29 |
+
int(atom.GetIsAromatic()),
|
30 |
+
int(atom.IsInRing()),
|
31 |
+
# Hybridization as one-hot (3 dimensions)
|
32 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP),
|
33 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP2),
|
34 |
+
int(atom.GetHybridization() == Chem.rdchem.HybridizationType.SP3)
|
35 |
+
]
|
36 |
+
atom_features.append(features)
|
37 |
+
|
38 |
+
x = torch.tensor(atom_features, dtype=torch.float)
|
39 |
+
|
40 |
+
# Enhanced bond features (6 dimensions)
|
41 |
+
edges_list = []
|
42 |
+
edge_features = []
|
43 |
+
for bond in mol.GetBonds():
|
44 |
+
i = bond.GetBeginAtomIdx()
|
45 |
+
j = bond.GetEndAtomIdx()
|
46 |
+
edges_list.extend([[i, j], [j, i]])
|
47 |
+
|
48 |
+
features = [
|
49 |
+
# Bond type as one-hot (4 dimensions)
|
50 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.SINGLE),
|
51 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.DOUBLE),
|
52 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.TRIPLE),
|
53 |
+
int(bond.GetBondType() == Chem.rdchem.BondType.AROMATIC),
|
54 |
+
# Additional features (2 dimensions)
|
55 |
+
int(bond.GetIsConjugated()),
|
56 |
+
int(bond.IsInRing())
|
57 |
+
]
|
58 |
+
edge_features.extend([features, features])
|
59 |
+
|
60 |
+
if not edges_list:
|
61 |
+
return None
|
62 |
+
|
63 |
+
edge_index = torch.tensor(edges_list, dtype=torch.long).t()
|
64 |
+
edge_attr = torch.tensor(edge_features, dtype=torch.float)
|
65 |
+
|
66 |
+
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
|
67 |
+
|
68 |
+
|
69 |
+
def load_model():
|
70 |
+
"""Load the AttentiveFP model"""
|
71 |
+
model_dict = torch.load('pytorch_model.pt', map_location='cpu')
|
72 |
+
state_dict = model_dict['model_state_dict']
|
73 |
+
hyperparams = model_dict['hyperparameters']
|
74 |
+
|
75 |
+
model = AttentiveFP(
|
76 |
+
in_channels=10, # Enhanced atom features
|
77 |
+
hidden_channels=hyperparams["hidden_channels"],
|
78 |
+
out_channels=1,
|
79 |
+
edge_dim=6, # Enhanced bond features
|
80 |
+
num_layers=hyperparams["num_layers"],
|
81 |
+
num_timesteps=hyperparams["num_timesteps"],
|
82 |
+
dropout=hyperparams["dropout"],
|
83 |
+
)
|
84 |
+
|
85 |
+
model.load_state_dict(state_dict)
|
86 |
+
model.eval()
|
87 |
+
return model
|
88 |
+
|
89 |
+
|
90 |
+
def predict(model, smiles):
|
91 |
+
"""Make prediction for a SMILES string"""
|
92 |
+
data = smiles_to_data(smiles)
|
93 |
+
if data is None:
|
94 |
+
return None
|
95 |
+
|
96 |
+
batch = torch.zeros(data.num_nodes, dtype=torch.long)
|
97 |
+
with torch.no_grad():
|
98 |
+
output = model(data.x, data.edge_index, data.edge_attr, batch)
|
99 |
+
return output.item()
|
100 |
+
|
101 |
+
|
102 |
+
def main():
|
103 |
+
if len(sys.argv) != 2:
|
104 |
+
print("Usage: python inference.py 'SMILES_STRING'")
|
105 |
+
print("Example: python inference.py 'CC(=O)OC1=CC=CC=C1C(=O)O'")
|
106 |
+
sys.exit(1)
|
107 |
+
|
108 |
+
smiles = sys.argv[1]
|
109 |
+
print(f"Loading tbiodeg AttentiveFP model...")
|
110 |
+
|
111 |
+
try:
|
112 |
+
model = load_model()
|
113 |
+
print(f"Making prediction for: {smiles}")
|
114 |
+
|
115 |
+
prediction = predict(model, smiles)
|
116 |
+
if prediction is not None:
|
117 |
+
print(f'Regression result: {prediction:.4f}')
|
118 |
+
else:
|
119 |
+
print("Error: Could not process SMILES string")
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error: {e}")
|
123 |
+
sys.exit(1)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
pytorch_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e422936990a4d3b3458585b80de6f7475e618120c922307f2c18314b58ae2d4
|
3 |
+
size 383007
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.9.0
|
2 |
+
torch-geometric>=2.0.0
|
3 |
+
rdkit-pypi>=2022.3.0
|
4 |
+
numpy>=1.21.0
|