--- language: - de - hu license: mit tags: - text-classification - emotion-detection - machine-learning - german - hungarian model_name: uvegesistvan/proposal_2b_german_to_hungarian_PT_label_v2 datasets: [] metrics: - precision - recall - f1-score - accuracy --- # Proposal 2B: German to Hungarian Emotion Labeling (v2) ## Model Description This model is designed for **emotion classification** in Hungarian texts. It was fine-tuned to recognize **nine emotion categories** and trained on a dataset with labeled examples. ## Labels and Their Meanings | Label | Emotion | |--------|----------------| | 0 | Anger | | 1 | Fear | | 2 | Disgust | | 3 | Sadness | | 4 | Joy | | 5 | None of them | | 6 | Enthusiasm | | 7 | Hope | | 8 | Pride | ## Evaluation Metrics The model was evaluated using **precision, recall, f1-score, and accuracy**. ### Classification Report | Label | Precision | Recall | F1-score | Support | |--------|------------|--------|----------|---------| | Anger (0) | 0.53 | 0.57 | 0.55 | 777 | | Fear (1) | 0.89 | 0.73 | 0.80 | 776 | | Disgust (2) | 0.92 | 0.95 | 0.93 | 776 | | Sadness (3) | 0.86 | 0.85 | 0.86 | 775 | | Joy (4) | 0.84 | 0.80 | 0.82 | 736 | | None of them (5) | 0.65 | 0.66 | 0.66 | 1594 | | Enthusiasm (6) | 0.62 | 0.64 | 0.63 | 776 | | Hope (7) | 0.52 | 0.52 | 0.52 | 777 | | Pride (8) | 0.76 | 0.79 | 0.77 | 776 | #### Overall Performance: - **Accuracy**: 72% - **Macro Avg**: Precision: 0.73, Recall: 0.72, F1-score: 0.73 - **Weighted Avg**: Precision: 0.72, Recall: 0.72, F1-score: 0.72 ## How to Use To use this model for text classification in Python: ```python from transformers import pipeline classifier = pipeline("text-classification", model="uvegesistvan/proposal_2b_german_to_hungarian_PT_label_v2") text = "Ich bin sehr glücklich, dass du hier bist!" # German result = classifier(text) print(result)