--- license: apache-2.0 datasets: - b-mc2/sql-create-context language: - en library_name: transformers --- # Generate SQL from text - Squeal Please use the code below as an example for how to use this model. ```python import torch from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig def load_model(model_name): # Load tokenizer and model with QLoRA configuration compute_dtype = getattr(torch, 'float16') bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=False, ) model = AutoModelForCausalLM.from_pretrained( model_name, device_map={"": 0}, quantization_config=bnb_config ) # Load Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" return model, tokenizer model, tokenizer = load_model('vagmi/squeal') prompt = "[INST] Output SQL for the given table structure \n \ CREATE TABLE votes (contestant_number VARCHAR, num_votes int); \ CREATE TABLE contestants (contestant_number VARCHAR, contestant_name VARCHAR); \ What is the contestant number and name of the contestant who got least votes?[/INST]" pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, device_map='auto', ) result = pipe(prompt) print(result[0]['generated_text'][len(prompt):-1]) ``` ## How I built it? Watch me build this model. https://www.youtube.com/watch?v=PNFhAfxR_d8 Here is the notebook I used to train this model. https://colab.research.google.com/drive/1jYX8AlRMTY7F_dH3hCFM4ljg5qEmCoUe#scrollTo=IUILKaGWhBxS