Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,19 @@ language:
|
|
5 |
license: mit
|
6 |
base_model: openai/whisper-large-v3-turbo
|
7 |
tags:
|
8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
datasets:
|
10 |
- vhdm/persian-voice-v1.1
|
11 |
metrics:
|
@@ -26,57 +38,101 @@ model-index:
|
|
26 |
value: 14.065335753176045
|
27 |
---
|
28 |
|
29 |
-
|
30 |
-
should probably proofread and complete it, then remove this comment. -->
|
31 |
|
32 |
-
|
33 |
|
34 |
-
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the vhdm/persian-voice-v1 dataset.
|
35 |
-
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.1445
|
37 |
-
- Wer: 14.0653
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
-
|
57 |
-
-
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
70 |
-
| 0.219 | 0.6150 | 1000 | 0.2093 | 22.0750 |
|
71 |
-
| 0.1191 | 1.2300 | 2000 | 0.1698 | 17.8463 |
|
72 |
-
| 0.1051 | 1.8450 | 3000 | 0.1485 | 15.7895 |
|
73 |
-
| 0.0644 | 2.4600 | 4000 | 0.1530 | 16.0375 |
|
74 |
-
| 0.0289 | 3.0750 | 5000 | 0.1445 | 14.0653 |
|
75 |
|
|
|
|
|
76 |
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
- Transformers 4.52.4
|
80 |
-
- Pytorch 2.7.1+cu118
|
81 |
-
- Datasets 3.6.0
|
82 |
-
- Tokenizers 0.21.1
|
|
|
5 |
license: mit
|
6 |
base_model: openai/whisper-large-v3-turbo
|
7 |
tags:
|
8 |
+
- whisper
|
9 |
+
- whisper-large-v3
|
10 |
+
- persian
|
11 |
+
- farsi
|
12 |
+
- speech-recognition
|
13 |
+
- asr
|
14 |
+
- automatic-speech-recognition
|
15 |
+
- audio
|
16 |
+
- transformers
|
17 |
+
- generated_from_trainer
|
18 |
+
- h100
|
19 |
+
- huggingface
|
20 |
+
- vhdm
|
21 |
datasets:
|
22 |
- vhdm/persian-voice-v1.1
|
23 |
metrics:
|
|
|
38 |
value: 14.065335753176045
|
39 |
---
|
40 |
|
41 |
+
# 📢 vhdm/whisper-v3-turbo-persian-v1.1
|
|
|
42 |
|
43 |
+
🎧 **Fine-tuned Whisper Large V3 Turbo for Persian Speech Recognition**
|
44 |
|
45 |
+
This model is a fine-tuned version of [`openai/whisper-large-v3-turbo`](https://huggingface.co/openai/whisper-large-v3-turbo) trained specifically on high-quality Persian speech data from the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset.
|
|
|
|
|
|
|
46 |
|
47 |
+
---
|
48 |
+
|
49 |
+
## 🧪 Evaluation Results
|
50 |
+
|
51 |
+
| Metric | Value |
|
52 |
+
|--------|-------|
|
53 |
+
| **Final Validation Loss** | 0.1445 |
|
54 |
+
| **Word Error Rate (WER)** | **14.07%** |
|
55 |
+
|
56 |
+
The model shows consistent improvement over training and reaches a solid WER of ~14% on clean Persian speech data.
|
57 |
|
58 |
+
---
|
59 |
+
|
60 |
+
## 🧠 Model Description
|
61 |
|
62 |
+
This model aims to bring high-accuracy **automatic speech recognition (ASR)** to Persian language using the Whisper architecture. By leveraging OpenAI's powerful Whisper Large V3 Turbo backbone and carefully curated Persian data, it can transcribe Persian audio with high fidelity.
|
63 |
+
|
64 |
+
---
|
65 |
|
66 |
+
## ✅ Intended Use
|
67 |
|
68 |
+
This model is best suited for:
|
69 |
|
70 |
+
- 📱 Transcribing Persian voice notes
|
71 |
+
- 🗣️ Real-time or batch ASR for Persian podcasts, videos, and interviews
|
72 |
+
- 🔍 Creating searchable transcripts of Persian audio content
|
73 |
+
- 🧩 Fine-tuning or domain adaptation for Persian speech tasks
|
74 |
|
75 |
+
### 🚫 Limitations
|
76 |
+
|
77 |
+
- The model is fine-tuned on clean audio from specific sources and may perform poorly on noisy, accented, or dialectal speech.
|
78 |
+
- Not optimized for real-time streaming ASR (though inference is fast).
|
79 |
+
- It may occasionally produce hallucinations (incorrect but plausible words), a common issue in Whisper models.
|
80 |
+
|
81 |
+
---
|
82 |
+
|
83 |
+
## 📚 Training Data
|
84 |
+
|
85 |
+
The model was trained on the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset, a curated collection of Persian speech recordings with high-quality transcriptions.
|
86 |
+
|
87 |
+
---
|
88 |
|
89 |
+
## ⚙️ Training Procedure
|
90 |
|
91 |
+
- **Optimizer**: AdamW (`betas=(0.9, 0.999)`, `eps=1e-08`)
|
92 |
+
- **Learning Rate**: 1e-5
|
93 |
+
- **Batch Sizes**: Train - 16 | Eval - 8
|
94 |
+
- **Scheduler**: Linear with 500 warmup steps
|
95 |
+
- **Mixed Precision**: Native AMP (automatic mixed precision)
|
96 |
+
- **Seed**: 42
|
97 |
+
- **Training Steps**: 5000
|
98 |
+
|
99 |
+
---
|
100 |
+
|
101 |
+
## ⏱️ Training Time & Hardware
|
102 |
+
|
103 |
+
The model was trained using an **NVIDIA H100 GPU**, and the full fine-tuning process took approximately **20 hours**.
|
104 |
+
|
105 |
+
---
|
106 |
+
|
107 |
+
## 📈 Training Progress
|
108 |
+
|
109 |
+
| Step | Training Loss | Validation Loss | WER (%) |
|
110 |
+
|------|----------------|-----------------|----------|
|
111 |
+
| 1000 | 0.2190 | 0.2093 | 22.07 |
|
112 |
+
| 2000 | 0.1191 | 0.1698 | 17.85 |
|
113 |
+
| 3000 | 0.1051 | 0.1485 | 15.79 |
|
114 |
+
| 4000 | 0.0644 | 0.1530 | 16.03 |
|
115 |
+
| 5000 | 0.0289 | 0.1445 | **14.07** |
|
116 |
+
|
117 |
+
---
|
118 |
+
|
119 |
+
## 🧰 Framework Versions
|
120 |
+
|
121 |
+
- `transformers`: 4.52.4
|
122 |
+
- `torch`: 2.7.1+cu118
|
123 |
+
- `datasets`: 3.6.0
|
124 |
+
- `tokenizers`: 0.21.1
|
125 |
+
|
126 |
+
---
|
127 |
|
128 |
+
## 🚀 Try it out
|
129 |
|
130 |
+
You can load and test the model using 🤗 Transformers:
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
```python
|
133 |
+
from transformers import pipeline
|
134 |
|
135 |
+
pipe = pipeline("automatic-speech-recognition", model="vhdm/whisper-v3-turbo-persian-v1.1")
|
136 |
+
result = pipe("path_to_persian_audio.wav")
|
137 |
+
print(result["text"])
|
138 |
|
|
|
|
|
|
|
|