Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- __pycache__/folder_paths.cpython-311.pyc +0 -0
- __pycache__/latent_preview.cpython-311.pyc +0 -0
- __pycache__/node_helpers.cpython-311.pyc +0 -0
- __pycache__/nodes.cpython-311.pyc +3 -0
- folder_paths.py +270 -0
- latent_preview.py +94 -0
- models/clip/clip_l.safetensors +3 -0
- models/clip/t5xxl_fp8_e4m3fn.safetensors +3 -0
- models/unet/flux1-schnell.safetensors +3 -0
- models/vae/ae.sft +3 -0
- node_helpers.py +37 -0
- nodes.py +2073 -0
- totoro/__pycache__/checkpoint_pickle.cpython-311.pyc +0 -0
- totoro/__pycache__/cli_args.cpython-311.pyc +0 -0
- totoro/__pycache__/clip_model.cpython-311.pyc +0 -0
- totoro/__pycache__/clip_vision.cpython-311.pyc +0 -0
- totoro/__pycache__/conds.cpython-311.pyc +0 -0
- totoro/__pycache__/controlnet.cpython-311.pyc +0 -0
- totoro/__pycache__/diffusers_convert.cpython-311.pyc +0 -0
- totoro/__pycache__/diffusers_load.cpython-311.pyc +0 -0
- totoro/__pycache__/gligen.cpython-311.pyc +0 -0
- totoro/__pycache__/latent_formats.cpython-311.pyc +0 -0
- totoro/__pycache__/lora.cpython-311.pyc +0 -0
- totoro/__pycache__/model_base.cpython-311.pyc +0 -0
- totoro/__pycache__/model_detection.cpython-311.pyc +0 -0
- totoro/__pycache__/model_management.cpython-311.pyc +0 -0
- totoro/__pycache__/model_patcher.cpython-311.pyc +0 -0
- totoro/__pycache__/model_sampling.cpython-311.pyc +0 -0
- totoro/__pycache__/ops.cpython-311.pyc +0 -0
- totoro/__pycache__/options.cpython-311.pyc +0 -0
- totoro/__pycache__/sample.cpython-311.pyc +0 -0
- totoro/__pycache__/sampler_helpers.cpython-311.pyc +0 -0
- totoro/__pycache__/samplers.cpython-311.pyc +0 -0
- totoro/__pycache__/sd.cpython-311.pyc +0 -0
- totoro/__pycache__/sd1_clip.cpython-311.pyc +0 -0
- totoro/__pycache__/sdxl_clip.cpython-311.pyc +0 -0
- totoro/__pycache__/supported_models.cpython-311.pyc +0 -0
- totoro/__pycache__/supported_models_base.cpython-311.pyc +0 -0
- totoro/__pycache__/types.cpython-311.pyc +0 -0
- totoro/__pycache__/utils.cpython-311.pyc +0 -0
- totoro/checkpoint_pickle.py +13 -0
- totoro/cldm/__pycache__/cldm.cpython-311.pyc +0 -0
- totoro/cldm/__pycache__/control_types.cpython-311.pyc +0 -0
- totoro/cldm/__pycache__/mmdit.cpython-311.pyc +0 -0
- totoro/cldm/cldm.py +437 -0
- totoro/cldm/control_types.py +10 -0
- totoro/cldm/mmdit.py +77 -0
- totoro/cli_args.py +180 -0
- totoro/clip_config_bigg.json +23 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
__pycache__/nodes.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
models/vae/ae.sft filter=lfs diff=lfs merge=lfs -text
|
__pycache__/folder_paths.cpython-311.pyc
ADDED
|
Binary file (17 kB). View file
|
|
|
__pycache__/latent_preview.cpython-311.pyc
ADDED
|
Binary file (6.52 kB). View file
|
|
|
__pycache__/node_helpers.cpython-311.pyc
ADDED
|
Binary file (1.76 kB). View file
|
|
|
__pycache__/nodes.cpython-311.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ede1805c76e641f174da26d129150e2a67be482e28bc0aa248fa606e69eb616
|
| 3 |
+
size 115175
|
folder_paths.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import logging
|
| 4 |
+
from typing import Set, List, Dict, Tuple
|
| 5 |
+
|
| 6 |
+
supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft'])
|
| 7 |
+
|
| 8 |
+
SupportedFileExtensionsType = Set[str]
|
| 9 |
+
ScanPathType = List[str]
|
| 10 |
+
folder_names_and_paths: Dict[str, Tuple[ScanPathType, SupportedFileExtensionsType]] = {}
|
| 11 |
+
|
| 12 |
+
base_path = os.path.dirname(os.path.realpath(__file__))
|
| 13 |
+
models_dir = os.path.join(base_path, "models")
|
| 14 |
+
folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions)
|
| 15 |
+
folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"])
|
| 16 |
+
|
| 17 |
+
folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions)
|
| 18 |
+
folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions)
|
| 19 |
+
folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions)
|
| 20 |
+
folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions)
|
| 21 |
+
folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions)
|
| 22 |
+
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
|
| 23 |
+
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
|
| 24 |
+
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
|
| 25 |
+
folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions)
|
| 26 |
+
|
| 27 |
+
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
|
| 28 |
+
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)
|
| 29 |
+
|
| 30 |
+
folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions)
|
| 31 |
+
|
| 32 |
+
folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], set())
|
| 33 |
+
|
| 34 |
+
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
|
| 35 |
+
|
| 36 |
+
folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions)
|
| 37 |
+
|
| 38 |
+
folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""})
|
| 39 |
+
|
| 40 |
+
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
| 41 |
+
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
| 42 |
+
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
| 43 |
+
user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user")
|
| 44 |
+
|
| 45 |
+
filename_list_cache = {}
|
| 46 |
+
|
| 47 |
+
if not os.path.exists(input_directory):
|
| 48 |
+
try:
|
| 49 |
+
os.makedirs(input_directory)
|
| 50 |
+
except:
|
| 51 |
+
logging.error("Failed to create input directory")
|
| 52 |
+
|
| 53 |
+
def set_output_directory(output_dir):
|
| 54 |
+
global output_directory
|
| 55 |
+
output_directory = output_dir
|
| 56 |
+
|
| 57 |
+
def set_temp_directory(temp_dir):
|
| 58 |
+
global temp_directory
|
| 59 |
+
temp_directory = temp_dir
|
| 60 |
+
|
| 61 |
+
def set_input_directory(input_dir):
|
| 62 |
+
global input_directory
|
| 63 |
+
input_directory = input_dir
|
| 64 |
+
|
| 65 |
+
def get_output_directory():
|
| 66 |
+
global output_directory
|
| 67 |
+
return output_directory
|
| 68 |
+
|
| 69 |
+
def get_temp_directory():
|
| 70 |
+
global temp_directory
|
| 71 |
+
return temp_directory
|
| 72 |
+
|
| 73 |
+
def get_input_directory():
|
| 74 |
+
global input_directory
|
| 75 |
+
return input_directory
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
#NOTE: used in http server so don't put folders that should not be accessed remotely
|
| 79 |
+
def get_directory_by_type(type_name):
|
| 80 |
+
if type_name == "output":
|
| 81 |
+
return get_output_directory()
|
| 82 |
+
if type_name == "temp":
|
| 83 |
+
return get_temp_directory()
|
| 84 |
+
if type_name == "input":
|
| 85 |
+
return get_input_directory()
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format
|
| 90 |
+
# otherwise use default_path as base_dir
|
| 91 |
+
def annotated_filepath(name):
|
| 92 |
+
if name.endswith("[output]"):
|
| 93 |
+
base_dir = get_output_directory()
|
| 94 |
+
name = name[:-9]
|
| 95 |
+
elif name.endswith("[input]"):
|
| 96 |
+
base_dir = get_input_directory()
|
| 97 |
+
name = name[:-8]
|
| 98 |
+
elif name.endswith("[temp]"):
|
| 99 |
+
base_dir = get_temp_directory()
|
| 100 |
+
name = name[:-7]
|
| 101 |
+
else:
|
| 102 |
+
return name, None
|
| 103 |
+
|
| 104 |
+
return name, base_dir
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_annotated_filepath(name, default_dir=None):
|
| 108 |
+
name, base_dir = annotated_filepath(name)
|
| 109 |
+
|
| 110 |
+
if base_dir is None:
|
| 111 |
+
if default_dir is not None:
|
| 112 |
+
base_dir = default_dir
|
| 113 |
+
else:
|
| 114 |
+
base_dir = get_input_directory() # fallback path
|
| 115 |
+
|
| 116 |
+
return os.path.join(base_dir, name)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def exists_annotated_filepath(name):
|
| 120 |
+
name, base_dir = annotated_filepath(name)
|
| 121 |
+
|
| 122 |
+
if base_dir is None:
|
| 123 |
+
base_dir = get_input_directory() # fallback path
|
| 124 |
+
|
| 125 |
+
filepath = os.path.join(base_dir, name)
|
| 126 |
+
return os.path.exists(filepath)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def add_model_folder_path(folder_name, full_folder_path):
|
| 130 |
+
global folder_names_and_paths
|
| 131 |
+
if folder_name in folder_names_and_paths:
|
| 132 |
+
folder_names_and_paths[folder_name][0].append(full_folder_path)
|
| 133 |
+
else:
|
| 134 |
+
folder_names_and_paths[folder_name] = ([full_folder_path], set())
|
| 135 |
+
|
| 136 |
+
def get_folder_paths(folder_name):
|
| 137 |
+
return folder_names_and_paths[folder_name][0][:]
|
| 138 |
+
|
| 139 |
+
def recursive_search(directory, excluded_dir_names=None):
|
| 140 |
+
if not os.path.isdir(directory):
|
| 141 |
+
return [], {}
|
| 142 |
+
|
| 143 |
+
if excluded_dir_names is None:
|
| 144 |
+
excluded_dir_names = []
|
| 145 |
+
|
| 146 |
+
result = []
|
| 147 |
+
dirs = {}
|
| 148 |
+
|
| 149 |
+
# Attempt to add the initial directory to dirs with error handling
|
| 150 |
+
try:
|
| 151 |
+
dirs[directory] = os.path.getmtime(directory)
|
| 152 |
+
except FileNotFoundError:
|
| 153 |
+
logging.warning(f"Warning: Unable to access {directory}. Skipping this path.")
|
| 154 |
+
|
| 155 |
+
logging.debug("recursive file list on directory {}".format(directory))
|
| 156 |
+
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
|
| 157 |
+
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
|
| 158 |
+
for file_name in filenames:
|
| 159 |
+
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
|
| 160 |
+
result.append(relative_path)
|
| 161 |
+
|
| 162 |
+
for d in subdirs:
|
| 163 |
+
path = os.path.join(dirpath, d)
|
| 164 |
+
try:
|
| 165 |
+
dirs[path] = os.path.getmtime(path)
|
| 166 |
+
except FileNotFoundError:
|
| 167 |
+
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
|
| 168 |
+
continue
|
| 169 |
+
logging.debug("found {} files".format(len(result)))
|
| 170 |
+
return result, dirs
|
| 171 |
+
|
| 172 |
+
def filter_files_extensions(files, extensions):
|
| 173 |
+
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files)))
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def get_full_path(folder_name, filename):
|
| 178 |
+
global folder_names_and_paths
|
| 179 |
+
if folder_name not in folder_names_and_paths:
|
| 180 |
+
return None
|
| 181 |
+
folders = folder_names_and_paths[folder_name]
|
| 182 |
+
filename = os.path.relpath(os.path.join("/", filename), "/")
|
| 183 |
+
for x in folders[0]:
|
| 184 |
+
full_path = os.path.join(x, filename)
|
| 185 |
+
if os.path.isfile(full_path):
|
| 186 |
+
return full_path
|
| 187 |
+
elif os.path.islink(full_path):
|
| 188 |
+
logging.warning("WARNING path {} exists but doesn't link anywhere, skipping.".format(full_path))
|
| 189 |
+
|
| 190 |
+
return None
|
| 191 |
+
|
| 192 |
+
def get_filename_list_(folder_name):
|
| 193 |
+
global folder_names_and_paths
|
| 194 |
+
output_list = set()
|
| 195 |
+
folders = folder_names_and_paths[folder_name]
|
| 196 |
+
output_folders = {}
|
| 197 |
+
for x in folders[0]:
|
| 198 |
+
files, folders_all = recursive_search(x, excluded_dir_names=[".git"])
|
| 199 |
+
output_list.update(filter_files_extensions(files, folders[1]))
|
| 200 |
+
output_folders = {**output_folders, **folders_all}
|
| 201 |
+
|
| 202 |
+
return (sorted(list(output_list)), output_folders, time.perf_counter())
|
| 203 |
+
|
| 204 |
+
def cached_filename_list_(folder_name):
|
| 205 |
+
global filename_list_cache
|
| 206 |
+
global folder_names_and_paths
|
| 207 |
+
if folder_name not in filename_list_cache:
|
| 208 |
+
return None
|
| 209 |
+
out = filename_list_cache[folder_name]
|
| 210 |
+
|
| 211 |
+
for x in out[1]:
|
| 212 |
+
time_modified = out[1][x]
|
| 213 |
+
folder = x
|
| 214 |
+
if os.path.getmtime(folder) != time_modified:
|
| 215 |
+
return None
|
| 216 |
+
|
| 217 |
+
folders = folder_names_and_paths[folder_name]
|
| 218 |
+
for x in folders[0]:
|
| 219 |
+
if os.path.isdir(x):
|
| 220 |
+
if x not in out[1]:
|
| 221 |
+
return None
|
| 222 |
+
|
| 223 |
+
return out
|
| 224 |
+
|
| 225 |
+
def get_filename_list(folder_name):
|
| 226 |
+
out = cached_filename_list_(folder_name)
|
| 227 |
+
if out is None:
|
| 228 |
+
out = get_filename_list_(folder_name)
|
| 229 |
+
global filename_list_cache
|
| 230 |
+
filename_list_cache[folder_name] = out
|
| 231 |
+
return list(out[0])
|
| 232 |
+
|
| 233 |
+
def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0):
|
| 234 |
+
def map_filename(filename):
|
| 235 |
+
prefix_len = len(os.path.basename(filename_prefix))
|
| 236 |
+
prefix = filename[:prefix_len + 1]
|
| 237 |
+
try:
|
| 238 |
+
digits = int(filename[prefix_len + 1:].split('_')[0])
|
| 239 |
+
except:
|
| 240 |
+
digits = 0
|
| 241 |
+
return (digits, prefix)
|
| 242 |
+
|
| 243 |
+
def compute_vars(input, image_width, image_height):
|
| 244 |
+
input = input.replace("%width%", str(image_width))
|
| 245 |
+
input = input.replace("%height%", str(image_height))
|
| 246 |
+
return input
|
| 247 |
+
|
| 248 |
+
filename_prefix = compute_vars(filename_prefix, image_width, image_height)
|
| 249 |
+
|
| 250 |
+
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
|
| 251 |
+
filename = os.path.basename(os.path.normpath(filename_prefix))
|
| 252 |
+
|
| 253 |
+
full_output_folder = os.path.join(output_dir, subfolder)
|
| 254 |
+
|
| 255 |
+
if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir:
|
| 256 |
+
err = "**** ERROR: Saving image outside the output folder is not allowed." + \
|
| 257 |
+
"\n full_output_folder: " + os.path.abspath(full_output_folder) + \
|
| 258 |
+
"\n output_dir: " + output_dir + \
|
| 259 |
+
"\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder)))
|
| 260 |
+
logging.error(err)
|
| 261 |
+
raise Exception(err)
|
| 262 |
+
|
| 263 |
+
try:
|
| 264 |
+
counter = max(filter(lambda a: os.path.normcase(a[1][:-1]) == os.path.normcase(filename) and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
| 265 |
+
except ValueError:
|
| 266 |
+
counter = 1
|
| 267 |
+
except FileNotFoundError:
|
| 268 |
+
os.makedirs(full_output_folder, exist_ok=True)
|
| 269 |
+
counter = 1
|
| 270 |
+
return full_output_folder, filename, counter, subfolder, filename_prefix
|
latent_preview.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import struct
|
| 4 |
+
import numpy as np
|
| 5 |
+
from totoro.cli_args import args, LatentPreviewMethod
|
| 6 |
+
from totoro.taesd.taesd import TAESD
|
| 7 |
+
import totoro.model_management
|
| 8 |
+
import folder_paths
|
| 9 |
+
import totoro.utils
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
MAX_PREVIEW_RESOLUTION = 512
|
| 13 |
+
|
| 14 |
+
def preview_to_image(latent_image):
|
| 15 |
+
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
|
| 16 |
+
.mul(0xFF) # to 0..255
|
| 17 |
+
).to(device="cpu", dtype=torch.uint8, non_blocking=totoro.model_management.device_supports_non_blocking(latent_image.device))
|
| 18 |
+
|
| 19 |
+
return Image.fromarray(latents_ubyte.numpy())
|
| 20 |
+
|
| 21 |
+
class LatentPreviewer:
|
| 22 |
+
def decode_latent_to_preview(self, x0):
|
| 23 |
+
pass
|
| 24 |
+
|
| 25 |
+
def decode_latent_to_preview_image(self, preview_format, x0):
|
| 26 |
+
preview_image = self.decode_latent_to_preview(x0)
|
| 27 |
+
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION)
|
| 28 |
+
|
| 29 |
+
class TAESDPreviewerImpl(LatentPreviewer):
|
| 30 |
+
def __init__(self, taesd):
|
| 31 |
+
self.taesd = taesd
|
| 32 |
+
|
| 33 |
+
def decode_latent_to_preview(self, x0):
|
| 34 |
+
x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2)
|
| 35 |
+
return preview_to_image(x_sample)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class Latent2RGBPreviewer(LatentPreviewer):
|
| 39 |
+
def __init__(self, latent_rgb_factors):
|
| 40 |
+
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu")
|
| 41 |
+
|
| 42 |
+
def decode_latent_to_preview(self, x0):
|
| 43 |
+
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
|
| 44 |
+
latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
|
| 45 |
+
return preview_to_image(latent_image)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_previewer(device, latent_format):
|
| 49 |
+
previewer = None
|
| 50 |
+
method = args.preview_method
|
| 51 |
+
if method != LatentPreviewMethod.NoPreviews:
|
| 52 |
+
# TODO previewer methods
|
| 53 |
+
taesd_decoder_path = None
|
| 54 |
+
if latent_format.taesd_decoder_name is not None:
|
| 55 |
+
taesd_decoder_path = next(
|
| 56 |
+
(fn for fn in folder_paths.get_filename_list("vae_approx")
|
| 57 |
+
if fn.startswith(latent_format.taesd_decoder_name)),
|
| 58 |
+
""
|
| 59 |
+
)
|
| 60 |
+
taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path)
|
| 61 |
+
|
| 62 |
+
if method == LatentPreviewMethod.Auto:
|
| 63 |
+
method = LatentPreviewMethod.Latent2RGB
|
| 64 |
+
|
| 65 |
+
if method == LatentPreviewMethod.TAESD:
|
| 66 |
+
if taesd_decoder_path:
|
| 67 |
+
taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device)
|
| 68 |
+
previewer = TAESDPreviewerImpl(taesd)
|
| 69 |
+
else:
|
| 70 |
+
logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name))
|
| 71 |
+
|
| 72 |
+
if previewer is None:
|
| 73 |
+
if latent_format.latent_rgb_factors is not None:
|
| 74 |
+
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors)
|
| 75 |
+
return previewer
|
| 76 |
+
|
| 77 |
+
def prepare_callback(model, steps, x0_output_dict=None):
|
| 78 |
+
preview_format = "JPEG"
|
| 79 |
+
if preview_format not in ["JPEG", "PNG"]:
|
| 80 |
+
preview_format = "JPEG"
|
| 81 |
+
|
| 82 |
+
previewer = get_previewer(model.load_device, model.model.latent_format)
|
| 83 |
+
|
| 84 |
+
pbar = totoro.utils.ProgressBar(steps)
|
| 85 |
+
def callback(step, x0, x, total_steps):
|
| 86 |
+
if x0_output_dict is not None:
|
| 87 |
+
x0_output_dict["x0"] = x0
|
| 88 |
+
|
| 89 |
+
preview_bytes = None
|
| 90 |
+
if previewer:
|
| 91 |
+
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
| 92 |
+
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
| 93 |
+
return callback
|
| 94 |
+
|
models/clip/clip_l.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:660c6f5b1abae9dc498ac2d21e1347d2abdb0cf6c0c0c8576cd796491d9a6cdd
|
| 3 |
+
size 246144152
|
models/clip/t5xxl_fp8_e4m3fn.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d330da4816157540d6bb7838bf63a0f02f573fc48ca4d8de34bb0cbfd514f09
|
| 3 |
+
size 4893934904
|
models/unet/flux1-schnell.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9403429e0052277ac2a87ad800adece5481eecefd9ed334e1f348723621d2a0a
|
| 3 |
+
size 23782506688
|
models/vae/ae.sft
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afc8e28272cd15db3919bacdb6918ce9c1ed22e96cb12c4d5ed0fba823529e38
|
| 3 |
+
size 335304388
|
node_helpers.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
|
| 3 |
+
from totoro.cli_args import args
|
| 4 |
+
|
| 5 |
+
from PIL import ImageFile, UnidentifiedImageError
|
| 6 |
+
|
| 7 |
+
def conditioning_set_values(conditioning, values={}):
|
| 8 |
+
c = []
|
| 9 |
+
for t in conditioning:
|
| 10 |
+
n = [t[0], t[1].copy()]
|
| 11 |
+
for k in values:
|
| 12 |
+
n[1][k] = values[k]
|
| 13 |
+
c.append(n)
|
| 14 |
+
|
| 15 |
+
return c
|
| 16 |
+
|
| 17 |
+
def pillow(fn, arg):
|
| 18 |
+
prev_value = None
|
| 19 |
+
try:
|
| 20 |
+
x = fn(arg)
|
| 21 |
+
except (OSError, UnidentifiedImageError, ValueError): #PIL issues #4472 and #2445, also fixes totoroUI issue #3416
|
| 22 |
+
prev_value = ImageFile.LOAD_TRUNCATED_IMAGES
|
| 23 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 24 |
+
x = fn(arg)
|
| 25 |
+
finally:
|
| 26 |
+
if prev_value is not None:
|
| 27 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = prev_value
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
def hasher():
|
| 31 |
+
hashfuncs = {
|
| 32 |
+
"md5": hashlib.md5,
|
| 33 |
+
"sha1": hashlib.sha1,
|
| 34 |
+
"sha256": hashlib.sha256,
|
| 35 |
+
"sha512": hashlib.sha512
|
| 36 |
+
}
|
| 37 |
+
return hashfuncs[args.default_hashing_function]
|
nodes.py
ADDED
|
@@ -0,0 +1,2073 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
import json
|
| 6 |
+
import hashlib
|
| 7 |
+
import traceback
|
| 8 |
+
import math
|
| 9 |
+
import time
|
| 10 |
+
import random
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from PIL import Image, ImageOps, ImageSequence, ImageFile
|
| 14 |
+
from PIL.PngImagePlugin import PngInfo
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import safetensors.torch
|
| 18 |
+
|
| 19 |
+
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "totoro"))
|
| 20 |
+
|
| 21 |
+
import totoro.diffusers_load
|
| 22 |
+
import totoro.samplers
|
| 23 |
+
import totoro.sample
|
| 24 |
+
import totoro.sd
|
| 25 |
+
import totoro.utils
|
| 26 |
+
import totoro.controlnet
|
| 27 |
+
|
| 28 |
+
import totoro.clip_vision
|
| 29 |
+
|
| 30 |
+
import totoro.model_management
|
| 31 |
+
from totoro.cli_args import args
|
| 32 |
+
|
| 33 |
+
import importlib
|
| 34 |
+
|
| 35 |
+
import folder_paths
|
| 36 |
+
import latent_preview
|
| 37 |
+
import node_helpers
|
| 38 |
+
|
| 39 |
+
def before_node_execution():
|
| 40 |
+
totoro.model_management.throw_exception_if_processing_interrupted()
|
| 41 |
+
|
| 42 |
+
def interrupt_processing(value=True):
|
| 43 |
+
totoro.model_management.interrupt_current_processing(value)
|
| 44 |
+
|
| 45 |
+
MAX_RESOLUTION=16384
|
| 46 |
+
|
| 47 |
+
class CLIPTextEncode:
|
| 48 |
+
@classmethod
|
| 49 |
+
def INPUT_TYPES(s):
|
| 50 |
+
return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}}
|
| 51 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 52 |
+
FUNCTION = "encode"
|
| 53 |
+
|
| 54 |
+
CATEGORY = "conditioning"
|
| 55 |
+
|
| 56 |
+
def encode(self, clip, text):
|
| 57 |
+
tokens = clip.tokenize(text)
|
| 58 |
+
output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True)
|
| 59 |
+
cond = output.pop("cond")
|
| 60 |
+
return ([[cond, output]], )
|
| 61 |
+
|
| 62 |
+
class ConditioningCombine:
|
| 63 |
+
@classmethod
|
| 64 |
+
def INPUT_TYPES(s):
|
| 65 |
+
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
| 66 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 67 |
+
FUNCTION = "combine"
|
| 68 |
+
|
| 69 |
+
CATEGORY = "conditioning"
|
| 70 |
+
|
| 71 |
+
def combine(self, conditioning_1, conditioning_2):
|
| 72 |
+
return (conditioning_1 + conditioning_2, )
|
| 73 |
+
|
| 74 |
+
class ConditioningAverage :
|
| 75 |
+
@classmethod
|
| 76 |
+
def INPUT_TYPES(s):
|
| 77 |
+
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
|
| 78 |
+
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
| 79 |
+
}}
|
| 80 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 81 |
+
FUNCTION = "addWeighted"
|
| 82 |
+
|
| 83 |
+
CATEGORY = "conditioning"
|
| 84 |
+
|
| 85 |
+
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
|
| 86 |
+
out = []
|
| 87 |
+
|
| 88 |
+
if len(conditioning_from) > 1:
|
| 89 |
+
logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
| 90 |
+
|
| 91 |
+
cond_from = conditioning_from[0][0]
|
| 92 |
+
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
|
| 93 |
+
|
| 94 |
+
for i in range(len(conditioning_to)):
|
| 95 |
+
t1 = conditioning_to[i][0]
|
| 96 |
+
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
|
| 97 |
+
t0 = cond_from[:,:t1.shape[1]]
|
| 98 |
+
if t0.shape[1] < t1.shape[1]:
|
| 99 |
+
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
|
| 100 |
+
|
| 101 |
+
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
|
| 102 |
+
t_to = conditioning_to[i][1].copy()
|
| 103 |
+
if pooled_output_from is not None and pooled_output_to is not None:
|
| 104 |
+
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
|
| 105 |
+
elif pooled_output_from is not None:
|
| 106 |
+
t_to["pooled_output"] = pooled_output_from
|
| 107 |
+
|
| 108 |
+
n = [tw, t_to]
|
| 109 |
+
out.append(n)
|
| 110 |
+
return (out, )
|
| 111 |
+
|
| 112 |
+
class ConditioningConcat:
|
| 113 |
+
@classmethod
|
| 114 |
+
def INPUT_TYPES(s):
|
| 115 |
+
return {"required": {
|
| 116 |
+
"conditioning_to": ("CONDITIONING",),
|
| 117 |
+
"conditioning_from": ("CONDITIONING",),
|
| 118 |
+
}}
|
| 119 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 120 |
+
FUNCTION = "concat"
|
| 121 |
+
|
| 122 |
+
CATEGORY = "conditioning"
|
| 123 |
+
|
| 124 |
+
def concat(self, conditioning_to, conditioning_from):
|
| 125 |
+
out = []
|
| 126 |
+
|
| 127 |
+
if len(conditioning_from) > 1:
|
| 128 |
+
logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
| 129 |
+
|
| 130 |
+
cond_from = conditioning_from[0][0]
|
| 131 |
+
|
| 132 |
+
for i in range(len(conditioning_to)):
|
| 133 |
+
t1 = conditioning_to[i][0]
|
| 134 |
+
tw = torch.cat((t1, cond_from),1)
|
| 135 |
+
n = [tw, conditioning_to[i][1].copy()]
|
| 136 |
+
out.append(n)
|
| 137 |
+
|
| 138 |
+
return (out, )
|
| 139 |
+
|
| 140 |
+
class ConditioningSetArea:
|
| 141 |
+
@classmethod
|
| 142 |
+
def INPUT_TYPES(s):
|
| 143 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 144 |
+
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
| 145 |
+
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
| 146 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 147 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 148 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
| 149 |
+
}}
|
| 150 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 151 |
+
FUNCTION = "append"
|
| 152 |
+
|
| 153 |
+
CATEGORY = "conditioning"
|
| 154 |
+
|
| 155 |
+
def append(self, conditioning, width, height, x, y, strength):
|
| 156 |
+
c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
|
| 157 |
+
"strength": strength,
|
| 158 |
+
"set_area_to_bounds": False})
|
| 159 |
+
return (c, )
|
| 160 |
+
|
| 161 |
+
class ConditioningSetAreaPercentage:
|
| 162 |
+
@classmethod
|
| 163 |
+
def INPUT_TYPES(s):
|
| 164 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 165 |
+
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
| 166 |
+
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
| 167 |
+
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
| 168 |
+
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
| 169 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
| 170 |
+
}}
|
| 171 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 172 |
+
FUNCTION = "append"
|
| 173 |
+
|
| 174 |
+
CATEGORY = "conditioning"
|
| 175 |
+
|
| 176 |
+
def append(self, conditioning, width, height, x, y, strength):
|
| 177 |
+
c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
|
| 178 |
+
"strength": strength,
|
| 179 |
+
"set_area_to_bounds": False})
|
| 180 |
+
return (c, )
|
| 181 |
+
|
| 182 |
+
class ConditioningSetAreaStrength:
|
| 183 |
+
@classmethod
|
| 184 |
+
def INPUT_TYPES(s):
|
| 185 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 186 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
| 187 |
+
}}
|
| 188 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 189 |
+
FUNCTION = "append"
|
| 190 |
+
|
| 191 |
+
CATEGORY = "conditioning"
|
| 192 |
+
|
| 193 |
+
def append(self, conditioning, strength):
|
| 194 |
+
c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
|
| 195 |
+
return (c, )
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class ConditioningSetMask:
|
| 199 |
+
@classmethod
|
| 200 |
+
def INPUT_TYPES(s):
|
| 201 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 202 |
+
"mask": ("MASK", ),
|
| 203 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
| 204 |
+
"set_cond_area": (["default", "mask bounds"],),
|
| 205 |
+
}}
|
| 206 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 207 |
+
FUNCTION = "append"
|
| 208 |
+
|
| 209 |
+
CATEGORY = "conditioning"
|
| 210 |
+
|
| 211 |
+
def append(self, conditioning, mask, set_cond_area, strength):
|
| 212 |
+
set_area_to_bounds = False
|
| 213 |
+
if set_cond_area != "default":
|
| 214 |
+
set_area_to_bounds = True
|
| 215 |
+
if len(mask.shape) < 3:
|
| 216 |
+
mask = mask.unsqueeze(0)
|
| 217 |
+
|
| 218 |
+
c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
|
| 219 |
+
"set_area_to_bounds": set_area_to_bounds,
|
| 220 |
+
"mask_strength": strength})
|
| 221 |
+
return (c, )
|
| 222 |
+
|
| 223 |
+
class ConditioningZeroOut:
|
| 224 |
+
@classmethod
|
| 225 |
+
def INPUT_TYPES(s):
|
| 226 |
+
return {"required": {"conditioning": ("CONDITIONING", )}}
|
| 227 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 228 |
+
FUNCTION = "zero_out"
|
| 229 |
+
|
| 230 |
+
CATEGORY = "advanced/conditioning"
|
| 231 |
+
|
| 232 |
+
def zero_out(self, conditioning):
|
| 233 |
+
c = []
|
| 234 |
+
for t in conditioning:
|
| 235 |
+
d = t[1].copy()
|
| 236 |
+
pooled_output = d.get("pooled_output", None)
|
| 237 |
+
if pooled_output is not None:
|
| 238 |
+
d["pooled_output"] = torch.zeros_like(pooled_output)
|
| 239 |
+
n = [torch.zeros_like(t[0]), d]
|
| 240 |
+
c.append(n)
|
| 241 |
+
return (c, )
|
| 242 |
+
|
| 243 |
+
class ConditioningSetTimestepRange:
|
| 244 |
+
@classmethod
|
| 245 |
+
def INPUT_TYPES(s):
|
| 246 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 247 |
+
"start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
| 248 |
+
"end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
| 249 |
+
}}
|
| 250 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 251 |
+
FUNCTION = "set_range"
|
| 252 |
+
|
| 253 |
+
CATEGORY = "advanced/conditioning"
|
| 254 |
+
|
| 255 |
+
def set_range(self, conditioning, start, end):
|
| 256 |
+
c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
|
| 257 |
+
"end_percent": end})
|
| 258 |
+
return (c, )
|
| 259 |
+
|
| 260 |
+
class VAEDecode:
|
| 261 |
+
@classmethod
|
| 262 |
+
def INPUT_TYPES(s):
|
| 263 |
+
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
| 264 |
+
RETURN_TYPES = ("IMAGE",)
|
| 265 |
+
FUNCTION = "decode"
|
| 266 |
+
|
| 267 |
+
CATEGORY = "latent"
|
| 268 |
+
|
| 269 |
+
def decode(self, vae, samples):
|
| 270 |
+
return (vae.decode(samples["samples"]), )
|
| 271 |
+
|
| 272 |
+
class VAEDecodeTiled:
|
| 273 |
+
@classmethod
|
| 274 |
+
def INPUT_TYPES(s):
|
| 275 |
+
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
|
| 276 |
+
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
|
| 277 |
+
}}
|
| 278 |
+
RETURN_TYPES = ("IMAGE",)
|
| 279 |
+
FUNCTION = "decode"
|
| 280 |
+
|
| 281 |
+
CATEGORY = "_for_testing"
|
| 282 |
+
|
| 283 |
+
def decode(self, vae, samples, tile_size):
|
| 284 |
+
return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
|
| 285 |
+
|
| 286 |
+
class VAEEncode:
|
| 287 |
+
@classmethod
|
| 288 |
+
def INPUT_TYPES(s):
|
| 289 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
| 290 |
+
RETURN_TYPES = ("LATENT",)
|
| 291 |
+
FUNCTION = "encode"
|
| 292 |
+
|
| 293 |
+
CATEGORY = "latent"
|
| 294 |
+
|
| 295 |
+
def encode(self, vae, pixels):
|
| 296 |
+
t = vae.encode(pixels[:,:,:,:3])
|
| 297 |
+
return ({"samples":t}, )
|
| 298 |
+
|
| 299 |
+
class VAEEncodeTiled:
|
| 300 |
+
@classmethod
|
| 301 |
+
def INPUT_TYPES(s):
|
| 302 |
+
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
|
| 303 |
+
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
|
| 304 |
+
}}
|
| 305 |
+
RETURN_TYPES = ("LATENT",)
|
| 306 |
+
FUNCTION = "encode"
|
| 307 |
+
|
| 308 |
+
CATEGORY = "_for_testing"
|
| 309 |
+
|
| 310 |
+
def encode(self, vae, pixels, tile_size):
|
| 311 |
+
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
|
| 312 |
+
return ({"samples":t}, )
|
| 313 |
+
|
| 314 |
+
class VAEEncodeForInpaint:
|
| 315 |
+
@classmethod
|
| 316 |
+
def INPUT_TYPES(s):
|
| 317 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
|
| 318 |
+
RETURN_TYPES = ("LATENT",)
|
| 319 |
+
FUNCTION = "encode"
|
| 320 |
+
|
| 321 |
+
CATEGORY = "latent/inpaint"
|
| 322 |
+
|
| 323 |
+
def encode(self, vae, pixels, mask, grow_mask_by=6):
|
| 324 |
+
x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
|
| 325 |
+
y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
|
| 326 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
| 327 |
+
|
| 328 |
+
pixels = pixels.clone()
|
| 329 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
| 330 |
+
x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
|
| 331 |
+
y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
|
| 332 |
+
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
| 333 |
+
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
| 334 |
+
|
| 335 |
+
#grow mask by a few pixels to keep things seamless in latent space
|
| 336 |
+
if grow_mask_by == 0:
|
| 337 |
+
mask_erosion = mask
|
| 338 |
+
else:
|
| 339 |
+
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
|
| 340 |
+
padding = math.ceil((grow_mask_by - 1) / 2)
|
| 341 |
+
|
| 342 |
+
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
|
| 343 |
+
|
| 344 |
+
m = (1.0 - mask.round()).squeeze(1)
|
| 345 |
+
for i in range(3):
|
| 346 |
+
pixels[:,:,:,i] -= 0.5
|
| 347 |
+
pixels[:,:,:,i] *= m
|
| 348 |
+
pixels[:,:,:,i] += 0.5
|
| 349 |
+
t = vae.encode(pixels)
|
| 350 |
+
|
| 351 |
+
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class InpaintModelConditioning:
|
| 355 |
+
@classmethod
|
| 356 |
+
def INPUT_TYPES(s):
|
| 357 |
+
return {"required": {"positive": ("CONDITIONING", ),
|
| 358 |
+
"negative": ("CONDITIONING", ),
|
| 359 |
+
"vae": ("VAE", ),
|
| 360 |
+
"pixels": ("IMAGE", ),
|
| 361 |
+
"mask": ("MASK", ),
|
| 362 |
+
}}
|
| 363 |
+
|
| 364 |
+
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
|
| 365 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
| 366 |
+
FUNCTION = "encode"
|
| 367 |
+
|
| 368 |
+
CATEGORY = "conditioning/inpaint"
|
| 369 |
+
|
| 370 |
+
def encode(self, positive, negative, pixels, vae, mask):
|
| 371 |
+
x = (pixels.shape[1] // 8) * 8
|
| 372 |
+
y = (pixels.shape[2] // 8) * 8
|
| 373 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
| 374 |
+
|
| 375 |
+
orig_pixels = pixels
|
| 376 |
+
pixels = orig_pixels.clone()
|
| 377 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
| 378 |
+
x_offset = (pixels.shape[1] % 8) // 2
|
| 379 |
+
y_offset = (pixels.shape[2] % 8) // 2
|
| 380 |
+
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
| 381 |
+
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
| 382 |
+
|
| 383 |
+
m = (1.0 - mask.round()).squeeze(1)
|
| 384 |
+
for i in range(3):
|
| 385 |
+
pixels[:,:,:,i] -= 0.5
|
| 386 |
+
pixels[:,:,:,i] *= m
|
| 387 |
+
pixels[:,:,:,i] += 0.5
|
| 388 |
+
concat_latent = vae.encode(pixels)
|
| 389 |
+
orig_latent = vae.encode(orig_pixels)
|
| 390 |
+
|
| 391 |
+
out_latent = {}
|
| 392 |
+
|
| 393 |
+
out_latent["samples"] = orig_latent
|
| 394 |
+
out_latent["noise_mask"] = mask
|
| 395 |
+
|
| 396 |
+
out = []
|
| 397 |
+
for conditioning in [positive, negative]:
|
| 398 |
+
c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
|
| 399 |
+
"concat_mask": mask})
|
| 400 |
+
out.append(c)
|
| 401 |
+
return (out[0], out[1], out_latent)
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
class SaveLatent:
|
| 405 |
+
def __init__(self):
|
| 406 |
+
self.output_dir = folder_paths.get_output_directory()
|
| 407 |
+
|
| 408 |
+
@classmethod
|
| 409 |
+
def INPUT_TYPES(s):
|
| 410 |
+
return {"required": { "samples": ("LATENT", ),
|
| 411 |
+
"filename_prefix": ("STRING", {"default": "latents/totoroUI"})},
|
| 412 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
| 413 |
+
}
|
| 414 |
+
RETURN_TYPES = ()
|
| 415 |
+
FUNCTION = "save"
|
| 416 |
+
|
| 417 |
+
OUTPUT_NODE = True
|
| 418 |
+
|
| 419 |
+
CATEGORY = "_for_testing"
|
| 420 |
+
|
| 421 |
+
def save(self, samples, filename_prefix="totoroUI", prompt=None, extra_pnginfo=None):
|
| 422 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
| 423 |
+
|
| 424 |
+
# support save metadata for latent sharing
|
| 425 |
+
prompt_info = ""
|
| 426 |
+
if prompt is not None:
|
| 427 |
+
prompt_info = json.dumps(prompt)
|
| 428 |
+
|
| 429 |
+
metadata = None
|
| 430 |
+
if not args.disable_metadata:
|
| 431 |
+
metadata = {"prompt": prompt_info}
|
| 432 |
+
if extra_pnginfo is not None:
|
| 433 |
+
for x in extra_pnginfo:
|
| 434 |
+
metadata[x] = json.dumps(extra_pnginfo[x])
|
| 435 |
+
|
| 436 |
+
file = f"{filename}_{counter:05}_.latent"
|
| 437 |
+
|
| 438 |
+
results = list()
|
| 439 |
+
results.append({
|
| 440 |
+
"filename": file,
|
| 441 |
+
"subfolder": subfolder,
|
| 442 |
+
"type": "output"
|
| 443 |
+
})
|
| 444 |
+
|
| 445 |
+
file = os.path.join(full_output_folder, file)
|
| 446 |
+
|
| 447 |
+
output = {}
|
| 448 |
+
output["latent_tensor"] = samples["samples"]
|
| 449 |
+
output["latent_format_version_0"] = torch.tensor([])
|
| 450 |
+
|
| 451 |
+
totoro.utils.save_torch_file(output, file, metadata=metadata)
|
| 452 |
+
return { "ui": { "latents": results } }
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class LoadLatent:
|
| 456 |
+
@classmethod
|
| 457 |
+
def INPUT_TYPES(s):
|
| 458 |
+
input_dir = folder_paths.get_input_directory()
|
| 459 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
|
| 460 |
+
return {"required": {"latent": [sorted(files), ]}, }
|
| 461 |
+
|
| 462 |
+
CATEGORY = "_for_testing"
|
| 463 |
+
|
| 464 |
+
RETURN_TYPES = ("LATENT", )
|
| 465 |
+
FUNCTION = "load"
|
| 466 |
+
|
| 467 |
+
def load(self, latent):
|
| 468 |
+
latent_path = folder_paths.get_annotated_filepath(latent)
|
| 469 |
+
latent = safetensors.torch.load_file(latent_path, device="cpu")
|
| 470 |
+
multiplier = 1.0
|
| 471 |
+
if "latent_format_version_0" not in latent:
|
| 472 |
+
multiplier = 1.0 / 0.18215
|
| 473 |
+
samples = {"samples": latent["latent_tensor"].float() * multiplier}
|
| 474 |
+
return (samples, )
|
| 475 |
+
|
| 476 |
+
@classmethod
|
| 477 |
+
def IS_CHANGED(s, latent):
|
| 478 |
+
image_path = folder_paths.get_annotated_filepath(latent)
|
| 479 |
+
m = hashlib.sha256()
|
| 480 |
+
with open(image_path, 'rb') as f:
|
| 481 |
+
m.update(f.read())
|
| 482 |
+
return m.digest().hex()
|
| 483 |
+
|
| 484 |
+
@classmethod
|
| 485 |
+
def VALIDATE_INPUTS(s, latent):
|
| 486 |
+
if not folder_paths.exists_annotated_filepath(latent):
|
| 487 |
+
return "Invalid latent file: {}".format(latent)
|
| 488 |
+
return True
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class CheckpointLoader:
|
| 492 |
+
@classmethod
|
| 493 |
+
def INPUT_TYPES(s):
|
| 494 |
+
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
|
| 495 |
+
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
|
| 496 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
| 497 |
+
FUNCTION = "load_checkpoint"
|
| 498 |
+
|
| 499 |
+
CATEGORY = "advanced/loaders"
|
| 500 |
+
|
| 501 |
+
def load_checkpoint(self, config_name, ckpt_name):
|
| 502 |
+
config_path = folder_paths.get_full_path("configs", config_name)
|
| 503 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
| 504 |
+
return totoro.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
| 505 |
+
|
| 506 |
+
class CheckpointLoaderSimple:
|
| 507 |
+
@classmethod
|
| 508 |
+
def INPUT_TYPES(s):
|
| 509 |
+
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
| 510 |
+
}}
|
| 511 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
| 512 |
+
FUNCTION = "load_checkpoint"
|
| 513 |
+
|
| 514 |
+
CATEGORY = "loaders"
|
| 515 |
+
|
| 516 |
+
def load_checkpoint(self, ckpt_name):
|
| 517 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
| 518 |
+
out = totoro.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
| 519 |
+
return out[:3]
|
| 520 |
+
|
| 521 |
+
class DiffusersLoader:
|
| 522 |
+
@classmethod
|
| 523 |
+
def INPUT_TYPES(cls):
|
| 524 |
+
paths = []
|
| 525 |
+
for search_path in folder_paths.get_folder_paths("diffusers"):
|
| 526 |
+
if os.path.exists(search_path):
|
| 527 |
+
for root, subdir, files in os.walk(search_path, followlinks=True):
|
| 528 |
+
if "model_index.json" in files:
|
| 529 |
+
paths.append(os.path.relpath(root, start=search_path))
|
| 530 |
+
|
| 531 |
+
return {"required": {"model_path": (paths,), }}
|
| 532 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
| 533 |
+
FUNCTION = "load_checkpoint"
|
| 534 |
+
|
| 535 |
+
CATEGORY = "advanced/loaders/deprecated"
|
| 536 |
+
|
| 537 |
+
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
|
| 538 |
+
for search_path in folder_paths.get_folder_paths("diffusers"):
|
| 539 |
+
if os.path.exists(search_path):
|
| 540 |
+
path = os.path.join(search_path, model_path)
|
| 541 |
+
if os.path.exists(path):
|
| 542 |
+
model_path = path
|
| 543 |
+
break
|
| 544 |
+
|
| 545 |
+
return totoro.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class unCLIPCheckpointLoader:
|
| 549 |
+
@classmethod
|
| 550 |
+
def INPUT_TYPES(s):
|
| 551 |
+
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
| 552 |
+
}}
|
| 553 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
|
| 554 |
+
FUNCTION = "load_checkpoint"
|
| 555 |
+
|
| 556 |
+
CATEGORY = "loaders"
|
| 557 |
+
|
| 558 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
| 559 |
+
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
| 560 |
+
out = totoro.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
| 561 |
+
return out
|
| 562 |
+
|
| 563 |
+
class CLIPSetLastLayer:
|
| 564 |
+
@classmethod
|
| 565 |
+
def INPUT_TYPES(s):
|
| 566 |
+
return {"required": { "clip": ("CLIP", ),
|
| 567 |
+
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
|
| 568 |
+
}}
|
| 569 |
+
RETURN_TYPES = ("CLIP",)
|
| 570 |
+
FUNCTION = "set_last_layer"
|
| 571 |
+
|
| 572 |
+
CATEGORY = "conditioning"
|
| 573 |
+
|
| 574 |
+
def set_last_layer(self, clip, stop_at_clip_layer):
|
| 575 |
+
clip = clip.clone()
|
| 576 |
+
clip.clip_layer(stop_at_clip_layer)
|
| 577 |
+
return (clip,)
|
| 578 |
+
|
| 579 |
+
class LoraLoader:
|
| 580 |
+
def __init__(self):
|
| 581 |
+
self.loaded_lora = None
|
| 582 |
+
|
| 583 |
+
@classmethod
|
| 584 |
+
def INPUT_TYPES(s):
|
| 585 |
+
return {"required": { "model": ("MODEL",),
|
| 586 |
+
"clip": ("CLIP", ),
|
| 587 |
+
"lora_name": (folder_paths.get_filename_list("loras"), ),
|
| 588 |
+
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
|
| 589 |
+
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
|
| 590 |
+
}}
|
| 591 |
+
RETURN_TYPES = ("MODEL", "CLIP")
|
| 592 |
+
FUNCTION = "load_lora"
|
| 593 |
+
|
| 594 |
+
CATEGORY = "loaders"
|
| 595 |
+
|
| 596 |
+
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
|
| 597 |
+
if strength_model == 0 and strength_clip == 0:
|
| 598 |
+
return (model, clip)
|
| 599 |
+
|
| 600 |
+
lora_path = folder_paths.get_full_path("loras", lora_name)
|
| 601 |
+
lora = None
|
| 602 |
+
if self.loaded_lora is not None:
|
| 603 |
+
if self.loaded_lora[0] == lora_path:
|
| 604 |
+
lora = self.loaded_lora[1]
|
| 605 |
+
else:
|
| 606 |
+
temp = self.loaded_lora
|
| 607 |
+
self.loaded_lora = None
|
| 608 |
+
del temp
|
| 609 |
+
|
| 610 |
+
if lora is None:
|
| 611 |
+
lora = totoro.utils.load_torch_file(lora_path, safe_load=True)
|
| 612 |
+
self.loaded_lora = (lora_path, lora)
|
| 613 |
+
|
| 614 |
+
model_lora, clip_lora = totoro.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
|
| 615 |
+
return (model_lora, clip_lora)
|
| 616 |
+
|
| 617 |
+
class LoraLoaderModelOnly(LoraLoader):
|
| 618 |
+
@classmethod
|
| 619 |
+
def INPUT_TYPES(s):
|
| 620 |
+
return {"required": { "model": ("MODEL",),
|
| 621 |
+
"lora_name": (folder_paths.get_filename_list("loras"), ),
|
| 622 |
+
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
|
| 623 |
+
}}
|
| 624 |
+
RETURN_TYPES = ("MODEL",)
|
| 625 |
+
FUNCTION = "load_lora_model_only"
|
| 626 |
+
|
| 627 |
+
def load_lora_model_only(self, model, lora_name, strength_model):
|
| 628 |
+
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
|
| 629 |
+
|
| 630 |
+
class VAELoader:
|
| 631 |
+
@staticmethod
|
| 632 |
+
def vae_list():
|
| 633 |
+
vaes = folder_paths.get_filename_list("vae")
|
| 634 |
+
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
| 635 |
+
sdxl_taesd_enc = False
|
| 636 |
+
sdxl_taesd_dec = False
|
| 637 |
+
sd1_taesd_enc = False
|
| 638 |
+
sd1_taesd_dec = False
|
| 639 |
+
sd3_taesd_enc = False
|
| 640 |
+
sd3_taesd_dec = False
|
| 641 |
+
|
| 642 |
+
for v in approx_vaes:
|
| 643 |
+
if v.startswith("taesd_decoder."):
|
| 644 |
+
sd1_taesd_dec = True
|
| 645 |
+
elif v.startswith("taesd_encoder."):
|
| 646 |
+
sd1_taesd_enc = True
|
| 647 |
+
elif v.startswith("taesdxl_decoder."):
|
| 648 |
+
sdxl_taesd_dec = True
|
| 649 |
+
elif v.startswith("taesdxl_encoder."):
|
| 650 |
+
sdxl_taesd_enc = True
|
| 651 |
+
elif v.startswith("taesd3_decoder."):
|
| 652 |
+
sd3_taesd_dec = True
|
| 653 |
+
elif v.startswith("taesd3_encoder."):
|
| 654 |
+
sd3_taesd_enc = True
|
| 655 |
+
if sd1_taesd_dec and sd1_taesd_enc:
|
| 656 |
+
vaes.append("taesd")
|
| 657 |
+
if sdxl_taesd_dec and sdxl_taesd_enc:
|
| 658 |
+
vaes.append("taesdxl")
|
| 659 |
+
if sd3_taesd_dec and sd3_taesd_enc:
|
| 660 |
+
vaes.append("taesd3")
|
| 661 |
+
return vaes
|
| 662 |
+
|
| 663 |
+
@staticmethod
|
| 664 |
+
def load_taesd(name):
|
| 665 |
+
sd = {}
|
| 666 |
+
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
| 667 |
+
|
| 668 |
+
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
|
| 669 |
+
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
|
| 670 |
+
|
| 671 |
+
enc = totoro.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
|
| 672 |
+
for k in enc:
|
| 673 |
+
sd["taesd_encoder.{}".format(k)] = enc[k]
|
| 674 |
+
|
| 675 |
+
dec = totoro.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
|
| 676 |
+
for k in dec:
|
| 677 |
+
sd["taesd_decoder.{}".format(k)] = dec[k]
|
| 678 |
+
|
| 679 |
+
if name == "taesd":
|
| 680 |
+
sd["vae_scale"] = torch.tensor(0.18215)
|
| 681 |
+
sd["vae_shift"] = torch.tensor(0.0)
|
| 682 |
+
elif name == "taesdxl":
|
| 683 |
+
sd["vae_scale"] = torch.tensor(0.13025)
|
| 684 |
+
sd["vae_shift"] = torch.tensor(0.0)
|
| 685 |
+
elif name == "taesd3":
|
| 686 |
+
sd["vae_scale"] = torch.tensor(1.5305)
|
| 687 |
+
sd["vae_shift"] = torch.tensor(0.0609)
|
| 688 |
+
return sd
|
| 689 |
+
|
| 690 |
+
@classmethod
|
| 691 |
+
def INPUT_TYPES(s):
|
| 692 |
+
return {"required": { "vae_name": (s.vae_list(), )}}
|
| 693 |
+
RETURN_TYPES = ("VAE",)
|
| 694 |
+
FUNCTION = "load_vae"
|
| 695 |
+
|
| 696 |
+
CATEGORY = "loaders"
|
| 697 |
+
|
| 698 |
+
#TODO: scale factor?
|
| 699 |
+
def load_vae(self, vae_name):
|
| 700 |
+
if vae_name in ["taesd", "taesdxl", "taesd3"]:
|
| 701 |
+
sd = self.load_taesd(vae_name)
|
| 702 |
+
else:
|
| 703 |
+
vae_path = folder_paths.get_full_path("vae", vae_name)
|
| 704 |
+
sd = totoro.utils.load_torch_file(vae_path)
|
| 705 |
+
vae = totoro.sd.VAE(sd=sd)
|
| 706 |
+
return (vae,)
|
| 707 |
+
|
| 708 |
+
class ControlNetLoader:
|
| 709 |
+
@classmethod
|
| 710 |
+
def INPUT_TYPES(s):
|
| 711 |
+
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
| 712 |
+
|
| 713 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
| 714 |
+
FUNCTION = "load_controlnet"
|
| 715 |
+
|
| 716 |
+
CATEGORY = "loaders"
|
| 717 |
+
|
| 718 |
+
def load_controlnet(self, control_net_name):
|
| 719 |
+
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
| 720 |
+
controlnet = totoro.controlnet.load_controlnet(controlnet_path)
|
| 721 |
+
return (controlnet,)
|
| 722 |
+
|
| 723 |
+
class DiffControlNetLoader:
|
| 724 |
+
@classmethod
|
| 725 |
+
def INPUT_TYPES(s):
|
| 726 |
+
return {"required": { "model": ("MODEL",),
|
| 727 |
+
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
| 728 |
+
|
| 729 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
| 730 |
+
FUNCTION = "load_controlnet"
|
| 731 |
+
|
| 732 |
+
CATEGORY = "loaders"
|
| 733 |
+
|
| 734 |
+
def load_controlnet(self, model, control_net_name):
|
| 735 |
+
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
| 736 |
+
controlnet = totoro.controlnet.load_controlnet(controlnet_path, model)
|
| 737 |
+
return (controlnet,)
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
class ControlNetApply:
|
| 741 |
+
@classmethod
|
| 742 |
+
def INPUT_TYPES(s):
|
| 743 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 744 |
+
"control_net": ("CONTROL_NET", ),
|
| 745 |
+
"image": ("IMAGE", ),
|
| 746 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
| 747 |
+
}}
|
| 748 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 749 |
+
FUNCTION = "apply_controlnet"
|
| 750 |
+
|
| 751 |
+
CATEGORY = "conditioning/controlnet"
|
| 752 |
+
|
| 753 |
+
def apply_controlnet(self, conditioning, control_net, image, strength):
|
| 754 |
+
if strength == 0:
|
| 755 |
+
return (conditioning, )
|
| 756 |
+
|
| 757 |
+
c = []
|
| 758 |
+
control_hint = image.movedim(-1,1)
|
| 759 |
+
for t in conditioning:
|
| 760 |
+
n = [t[0], t[1].copy()]
|
| 761 |
+
c_net = control_net.copy().set_cond_hint(control_hint, strength)
|
| 762 |
+
if 'control' in t[1]:
|
| 763 |
+
c_net.set_previous_controlnet(t[1]['control'])
|
| 764 |
+
n[1]['control'] = c_net
|
| 765 |
+
n[1]['control_apply_to_uncond'] = True
|
| 766 |
+
c.append(n)
|
| 767 |
+
return (c, )
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
class ControlNetApplyAdvanced:
|
| 771 |
+
@classmethod
|
| 772 |
+
def INPUT_TYPES(s):
|
| 773 |
+
return {"required": {"positive": ("CONDITIONING", ),
|
| 774 |
+
"negative": ("CONDITIONING", ),
|
| 775 |
+
"control_net": ("CONTROL_NET", ),
|
| 776 |
+
"image": ("IMAGE", ),
|
| 777 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
| 778 |
+
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
| 779 |
+
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
| 780 |
+
}}
|
| 781 |
+
|
| 782 |
+
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
|
| 783 |
+
RETURN_NAMES = ("positive", "negative")
|
| 784 |
+
FUNCTION = "apply_controlnet"
|
| 785 |
+
|
| 786 |
+
CATEGORY = "conditioning/controlnet"
|
| 787 |
+
|
| 788 |
+
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None):
|
| 789 |
+
if strength == 0:
|
| 790 |
+
return (positive, negative)
|
| 791 |
+
|
| 792 |
+
control_hint = image.movedim(-1,1)
|
| 793 |
+
cnets = {}
|
| 794 |
+
|
| 795 |
+
out = []
|
| 796 |
+
for conditioning in [positive, negative]:
|
| 797 |
+
c = []
|
| 798 |
+
for t in conditioning:
|
| 799 |
+
d = t[1].copy()
|
| 800 |
+
|
| 801 |
+
prev_cnet = d.get('control', None)
|
| 802 |
+
if prev_cnet in cnets:
|
| 803 |
+
c_net = cnets[prev_cnet]
|
| 804 |
+
else:
|
| 805 |
+
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae)
|
| 806 |
+
c_net.set_previous_controlnet(prev_cnet)
|
| 807 |
+
cnets[prev_cnet] = c_net
|
| 808 |
+
|
| 809 |
+
d['control'] = c_net
|
| 810 |
+
d['control_apply_to_uncond'] = False
|
| 811 |
+
n = [t[0], d]
|
| 812 |
+
c.append(n)
|
| 813 |
+
out.append(c)
|
| 814 |
+
return (out[0], out[1])
|
| 815 |
+
|
| 816 |
+
|
| 817 |
+
class UNETLoader:
|
| 818 |
+
@classmethod
|
| 819 |
+
def INPUT_TYPES(s):
|
| 820 |
+
return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
|
| 821 |
+
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e5m2"],)
|
| 822 |
+
}}
|
| 823 |
+
RETURN_TYPES = ("MODEL",)
|
| 824 |
+
FUNCTION = "load_unet"
|
| 825 |
+
|
| 826 |
+
CATEGORY = "advanced/loaders"
|
| 827 |
+
|
| 828 |
+
def load_unet(self, unet_name, weight_dtype):
|
| 829 |
+
weight_dtype = {"default":None, "fp8_e4m3fn":torch.float8_e4m3fn, "fp8_e5m2":torch.float8_e4m3fn}[weight_dtype]
|
| 830 |
+
unet_path = folder_paths.get_full_path("unet", unet_name)
|
| 831 |
+
model = totoro.sd.load_unet(unet_path, dtype=weight_dtype)
|
| 832 |
+
return (model,)
|
| 833 |
+
|
| 834 |
+
class CLIPLoader:
|
| 835 |
+
@classmethod
|
| 836 |
+
def INPUT_TYPES(s):
|
| 837 |
+
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
|
| 838 |
+
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"], ),
|
| 839 |
+
}}
|
| 840 |
+
RETURN_TYPES = ("CLIP",)
|
| 841 |
+
FUNCTION = "load_clip"
|
| 842 |
+
|
| 843 |
+
CATEGORY = "advanced/loaders"
|
| 844 |
+
|
| 845 |
+
def load_clip(self, clip_name, type="stable_diffusion"):
|
| 846 |
+
if type == "stable_cascade":
|
| 847 |
+
clip_type = totoro.sd.CLIPType.STABLE_CASCADE
|
| 848 |
+
elif type == "sd3":
|
| 849 |
+
clip_type = totoro.sd.CLIPType.SD3
|
| 850 |
+
elif type == "stable_audio":
|
| 851 |
+
clip_type = totoro.sd.CLIPType.STABLE_AUDIO
|
| 852 |
+
else:
|
| 853 |
+
clip_type = totoro.sd.CLIPType.STABLE_DIFFUSION
|
| 854 |
+
|
| 855 |
+
clip_path = folder_paths.get_full_path("clip", clip_name)
|
| 856 |
+
clip = totoro.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
| 857 |
+
return (clip,)
|
| 858 |
+
|
| 859 |
+
class DualCLIPLoader:
|
| 860 |
+
@classmethod
|
| 861 |
+
def INPUT_TYPES(s):
|
| 862 |
+
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ),
|
| 863 |
+
"clip_name2": (folder_paths.get_filename_list("clip"), ),
|
| 864 |
+
"type": (["sdxl", "sd3", "flux"], ),
|
| 865 |
+
}}
|
| 866 |
+
RETURN_TYPES = ("CLIP",)
|
| 867 |
+
FUNCTION = "load_clip"
|
| 868 |
+
|
| 869 |
+
CATEGORY = "advanced/loaders"
|
| 870 |
+
|
| 871 |
+
def load_clip(self, clip_name1, clip_name2, type):
|
| 872 |
+
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
|
| 873 |
+
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
|
| 874 |
+
if type == "sdxl":
|
| 875 |
+
clip_type = totoro.sd.CLIPType.STABLE_DIFFUSION
|
| 876 |
+
elif type == "sd3":
|
| 877 |
+
clip_type = totoro.sd.CLIPType.SD3
|
| 878 |
+
elif type == "flux":
|
| 879 |
+
clip_type = totoro.sd.CLIPType.FLUX
|
| 880 |
+
|
| 881 |
+
clip = totoro.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
| 882 |
+
return (clip,)
|
| 883 |
+
|
| 884 |
+
class CLIPVisionLoader:
|
| 885 |
+
@classmethod
|
| 886 |
+
def INPUT_TYPES(s):
|
| 887 |
+
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
|
| 888 |
+
}}
|
| 889 |
+
RETURN_TYPES = ("CLIP_VISION",)
|
| 890 |
+
FUNCTION = "load_clip"
|
| 891 |
+
|
| 892 |
+
CATEGORY = "loaders"
|
| 893 |
+
|
| 894 |
+
def load_clip(self, clip_name):
|
| 895 |
+
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
|
| 896 |
+
clip_vision = totoro.clip_vision.load(clip_path)
|
| 897 |
+
return (clip_vision,)
|
| 898 |
+
|
| 899 |
+
class CLIPVisionEncode:
|
| 900 |
+
@classmethod
|
| 901 |
+
def INPUT_TYPES(s):
|
| 902 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
| 903 |
+
"image": ("IMAGE",)
|
| 904 |
+
}}
|
| 905 |
+
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
| 906 |
+
FUNCTION = "encode"
|
| 907 |
+
|
| 908 |
+
CATEGORY = "conditioning"
|
| 909 |
+
|
| 910 |
+
def encode(self, clip_vision, image):
|
| 911 |
+
output = clip_vision.encode_image(image)
|
| 912 |
+
return (output,)
|
| 913 |
+
|
| 914 |
+
class StyleModelLoader:
|
| 915 |
+
@classmethod
|
| 916 |
+
def INPUT_TYPES(s):
|
| 917 |
+
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
|
| 918 |
+
|
| 919 |
+
RETURN_TYPES = ("STYLE_MODEL",)
|
| 920 |
+
FUNCTION = "load_style_model"
|
| 921 |
+
|
| 922 |
+
CATEGORY = "loaders"
|
| 923 |
+
|
| 924 |
+
def load_style_model(self, style_model_name):
|
| 925 |
+
style_model_path = folder_paths.get_full_path("style_models", style_model_name)
|
| 926 |
+
style_model = totoro.sd.load_style_model(style_model_path)
|
| 927 |
+
return (style_model,)
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
class StyleModelApply:
|
| 931 |
+
@classmethod
|
| 932 |
+
def INPUT_TYPES(s):
|
| 933 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 934 |
+
"style_model": ("STYLE_MODEL", ),
|
| 935 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
| 936 |
+
}}
|
| 937 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 938 |
+
FUNCTION = "apply_stylemodel"
|
| 939 |
+
|
| 940 |
+
CATEGORY = "conditioning/style_model"
|
| 941 |
+
|
| 942 |
+
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
| 943 |
+
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
| 944 |
+
c = []
|
| 945 |
+
for t in conditioning:
|
| 946 |
+
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
| 947 |
+
c.append(n)
|
| 948 |
+
return (c, )
|
| 949 |
+
|
| 950 |
+
class unCLIPConditioning:
|
| 951 |
+
@classmethod
|
| 952 |
+
def INPUT_TYPES(s):
|
| 953 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
| 954 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
| 955 |
+
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
| 956 |
+
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
| 957 |
+
}}
|
| 958 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 959 |
+
FUNCTION = "apply_adm"
|
| 960 |
+
|
| 961 |
+
CATEGORY = "conditioning"
|
| 962 |
+
|
| 963 |
+
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
|
| 964 |
+
if strength == 0:
|
| 965 |
+
return (conditioning, )
|
| 966 |
+
|
| 967 |
+
c = []
|
| 968 |
+
for t in conditioning:
|
| 969 |
+
o = t[1].copy()
|
| 970 |
+
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
|
| 971 |
+
if "unclip_conditioning" in o:
|
| 972 |
+
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
|
| 973 |
+
else:
|
| 974 |
+
o["unclip_conditioning"] = [x]
|
| 975 |
+
n = [t[0], o]
|
| 976 |
+
c.append(n)
|
| 977 |
+
return (c, )
|
| 978 |
+
|
| 979 |
+
class GLIGENLoader:
|
| 980 |
+
@classmethod
|
| 981 |
+
def INPUT_TYPES(s):
|
| 982 |
+
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
|
| 983 |
+
|
| 984 |
+
RETURN_TYPES = ("GLIGEN",)
|
| 985 |
+
FUNCTION = "load_gligen"
|
| 986 |
+
|
| 987 |
+
CATEGORY = "loaders"
|
| 988 |
+
|
| 989 |
+
def load_gligen(self, gligen_name):
|
| 990 |
+
gligen_path = folder_paths.get_full_path("gligen", gligen_name)
|
| 991 |
+
gligen = totoro.sd.load_gligen(gligen_path)
|
| 992 |
+
return (gligen,)
|
| 993 |
+
|
| 994 |
+
class GLIGENTextBoxApply:
|
| 995 |
+
@classmethod
|
| 996 |
+
def INPUT_TYPES(s):
|
| 997 |
+
return {"required": {"conditioning_to": ("CONDITIONING", ),
|
| 998 |
+
"clip": ("CLIP", ),
|
| 999 |
+
"gligen_textbox_model": ("GLIGEN", ),
|
| 1000 |
+
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
| 1001 |
+
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
| 1002 |
+
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
| 1003 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1004 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1005 |
+
}}
|
| 1006 |
+
RETURN_TYPES = ("CONDITIONING",)
|
| 1007 |
+
FUNCTION = "append"
|
| 1008 |
+
|
| 1009 |
+
CATEGORY = "conditioning/gligen"
|
| 1010 |
+
|
| 1011 |
+
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
|
| 1012 |
+
c = []
|
| 1013 |
+
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
|
| 1014 |
+
for t in conditioning_to:
|
| 1015 |
+
n = [t[0], t[1].copy()]
|
| 1016 |
+
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
|
| 1017 |
+
prev = []
|
| 1018 |
+
if "gligen" in n[1]:
|
| 1019 |
+
prev = n[1]['gligen'][2]
|
| 1020 |
+
|
| 1021 |
+
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
|
| 1022 |
+
c.append(n)
|
| 1023 |
+
return (c, )
|
| 1024 |
+
|
| 1025 |
+
class EmptyLatentImage:
|
| 1026 |
+
def __init__(self):
|
| 1027 |
+
self.device = totoro.model_management.intermediate_device()
|
| 1028 |
+
|
| 1029 |
+
@classmethod
|
| 1030 |
+
def INPUT_TYPES(s):
|
| 1031 |
+
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
| 1032 |
+
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
| 1033 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
| 1034 |
+
RETURN_TYPES = ("LATENT",)
|
| 1035 |
+
FUNCTION = "generate"
|
| 1036 |
+
|
| 1037 |
+
CATEGORY = "latent"
|
| 1038 |
+
|
| 1039 |
+
def generate(self, width, height, batch_size=1):
|
| 1040 |
+
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
|
| 1041 |
+
return ({"samples":latent}, )
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
+
class LatentFromBatch:
|
| 1045 |
+
@classmethod
|
| 1046 |
+
def INPUT_TYPES(s):
|
| 1047 |
+
return {"required": { "samples": ("LATENT",),
|
| 1048 |
+
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
|
| 1049 |
+
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
|
| 1050 |
+
}}
|
| 1051 |
+
RETURN_TYPES = ("LATENT",)
|
| 1052 |
+
FUNCTION = "frombatch"
|
| 1053 |
+
|
| 1054 |
+
CATEGORY = "latent/batch"
|
| 1055 |
+
|
| 1056 |
+
def frombatch(self, samples, batch_index, length):
|
| 1057 |
+
s = samples.copy()
|
| 1058 |
+
s_in = samples["samples"]
|
| 1059 |
+
batch_index = min(s_in.shape[0] - 1, batch_index)
|
| 1060 |
+
length = min(s_in.shape[0] - batch_index, length)
|
| 1061 |
+
s["samples"] = s_in[batch_index:batch_index + length].clone()
|
| 1062 |
+
if "noise_mask" in samples:
|
| 1063 |
+
masks = samples["noise_mask"]
|
| 1064 |
+
if masks.shape[0] == 1:
|
| 1065 |
+
s["noise_mask"] = masks.clone()
|
| 1066 |
+
else:
|
| 1067 |
+
if masks.shape[0] < s_in.shape[0]:
|
| 1068 |
+
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
|
| 1069 |
+
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
|
| 1070 |
+
if "batch_index" not in s:
|
| 1071 |
+
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
|
| 1072 |
+
else:
|
| 1073 |
+
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
|
| 1074 |
+
return (s,)
|
| 1075 |
+
|
| 1076 |
+
class RepeatLatentBatch:
|
| 1077 |
+
@classmethod
|
| 1078 |
+
def INPUT_TYPES(s):
|
| 1079 |
+
return {"required": { "samples": ("LATENT",),
|
| 1080 |
+
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
|
| 1081 |
+
}}
|
| 1082 |
+
RETURN_TYPES = ("LATENT",)
|
| 1083 |
+
FUNCTION = "repeat"
|
| 1084 |
+
|
| 1085 |
+
CATEGORY = "latent/batch"
|
| 1086 |
+
|
| 1087 |
+
def repeat(self, samples, amount):
|
| 1088 |
+
s = samples.copy()
|
| 1089 |
+
s_in = samples["samples"]
|
| 1090 |
+
|
| 1091 |
+
s["samples"] = s_in.repeat((amount, 1,1,1))
|
| 1092 |
+
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
|
| 1093 |
+
masks = samples["noise_mask"]
|
| 1094 |
+
if masks.shape[0] < s_in.shape[0]:
|
| 1095 |
+
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
|
| 1096 |
+
s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
|
| 1097 |
+
if "batch_index" in s:
|
| 1098 |
+
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
|
| 1099 |
+
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
|
| 1100 |
+
return (s,)
|
| 1101 |
+
|
| 1102 |
+
class LatentUpscale:
|
| 1103 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
| 1104 |
+
crop_methods = ["disabled", "center"]
|
| 1105 |
+
|
| 1106 |
+
@classmethod
|
| 1107 |
+
def INPUT_TYPES(s):
|
| 1108 |
+
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
| 1109 |
+
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1110 |
+
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1111 |
+
"crop": (s.crop_methods,)}}
|
| 1112 |
+
RETURN_TYPES = ("LATENT",)
|
| 1113 |
+
FUNCTION = "upscale"
|
| 1114 |
+
|
| 1115 |
+
CATEGORY = "latent"
|
| 1116 |
+
|
| 1117 |
+
def upscale(self, samples, upscale_method, width, height, crop):
|
| 1118 |
+
if width == 0 and height == 0:
|
| 1119 |
+
s = samples
|
| 1120 |
+
else:
|
| 1121 |
+
s = samples.copy()
|
| 1122 |
+
|
| 1123 |
+
if width == 0:
|
| 1124 |
+
height = max(64, height)
|
| 1125 |
+
width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
|
| 1126 |
+
elif height == 0:
|
| 1127 |
+
width = max(64, width)
|
| 1128 |
+
height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
|
| 1129 |
+
else:
|
| 1130 |
+
width = max(64, width)
|
| 1131 |
+
height = max(64, height)
|
| 1132 |
+
|
| 1133 |
+
s["samples"] = totoro.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
|
| 1134 |
+
return (s,)
|
| 1135 |
+
|
| 1136 |
+
class LatentUpscaleBy:
|
| 1137 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
| 1138 |
+
|
| 1139 |
+
@classmethod
|
| 1140 |
+
def INPUT_TYPES(s):
|
| 1141 |
+
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
| 1142 |
+
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
| 1143 |
+
RETURN_TYPES = ("LATENT",)
|
| 1144 |
+
FUNCTION = "upscale"
|
| 1145 |
+
|
| 1146 |
+
CATEGORY = "latent"
|
| 1147 |
+
|
| 1148 |
+
def upscale(self, samples, upscale_method, scale_by):
|
| 1149 |
+
s = samples.copy()
|
| 1150 |
+
width = round(samples["samples"].shape[3] * scale_by)
|
| 1151 |
+
height = round(samples["samples"].shape[2] * scale_by)
|
| 1152 |
+
s["samples"] = totoro.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
|
| 1153 |
+
return (s,)
|
| 1154 |
+
|
| 1155 |
+
class LatentRotate:
|
| 1156 |
+
@classmethod
|
| 1157 |
+
def INPUT_TYPES(s):
|
| 1158 |
+
return {"required": { "samples": ("LATENT",),
|
| 1159 |
+
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
|
| 1160 |
+
}}
|
| 1161 |
+
RETURN_TYPES = ("LATENT",)
|
| 1162 |
+
FUNCTION = "rotate"
|
| 1163 |
+
|
| 1164 |
+
CATEGORY = "latent/transform"
|
| 1165 |
+
|
| 1166 |
+
def rotate(self, samples, rotation):
|
| 1167 |
+
s = samples.copy()
|
| 1168 |
+
rotate_by = 0
|
| 1169 |
+
if rotation.startswith("90"):
|
| 1170 |
+
rotate_by = 1
|
| 1171 |
+
elif rotation.startswith("180"):
|
| 1172 |
+
rotate_by = 2
|
| 1173 |
+
elif rotation.startswith("270"):
|
| 1174 |
+
rotate_by = 3
|
| 1175 |
+
|
| 1176 |
+
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
|
| 1177 |
+
return (s,)
|
| 1178 |
+
|
| 1179 |
+
class LatentFlip:
|
| 1180 |
+
@classmethod
|
| 1181 |
+
def INPUT_TYPES(s):
|
| 1182 |
+
return {"required": { "samples": ("LATENT",),
|
| 1183 |
+
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
|
| 1184 |
+
}}
|
| 1185 |
+
RETURN_TYPES = ("LATENT",)
|
| 1186 |
+
FUNCTION = "flip"
|
| 1187 |
+
|
| 1188 |
+
CATEGORY = "latent/transform"
|
| 1189 |
+
|
| 1190 |
+
def flip(self, samples, flip_method):
|
| 1191 |
+
s = samples.copy()
|
| 1192 |
+
if flip_method.startswith("x"):
|
| 1193 |
+
s["samples"] = torch.flip(samples["samples"], dims=[2])
|
| 1194 |
+
elif flip_method.startswith("y"):
|
| 1195 |
+
s["samples"] = torch.flip(samples["samples"], dims=[3])
|
| 1196 |
+
|
| 1197 |
+
return (s,)
|
| 1198 |
+
|
| 1199 |
+
class LatentComposite:
|
| 1200 |
+
@classmethod
|
| 1201 |
+
def INPUT_TYPES(s):
|
| 1202 |
+
return {"required": { "samples_to": ("LATENT",),
|
| 1203 |
+
"samples_from": ("LATENT",),
|
| 1204 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1205 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1206 |
+
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1207 |
+
}}
|
| 1208 |
+
RETURN_TYPES = ("LATENT",)
|
| 1209 |
+
FUNCTION = "composite"
|
| 1210 |
+
|
| 1211 |
+
CATEGORY = "latent"
|
| 1212 |
+
|
| 1213 |
+
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
|
| 1214 |
+
x = x // 8
|
| 1215 |
+
y = y // 8
|
| 1216 |
+
feather = feather // 8
|
| 1217 |
+
samples_out = samples_to.copy()
|
| 1218 |
+
s = samples_to["samples"].clone()
|
| 1219 |
+
samples_to = samples_to["samples"]
|
| 1220 |
+
samples_from = samples_from["samples"]
|
| 1221 |
+
if feather == 0:
|
| 1222 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
| 1223 |
+
else:
|
| 1224 |
+
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
| 1225 |
+
mask = torch.ones_like(samples_from)
|
| 1226 |
+
for t in range(feather):
|
| 1227 |
+
if y != 0:
|
| 1228 |
+
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
| 1229 |
+
|
| 1230 |
+
if y + samples_from.shape[2] < samples_to.shape[2]:
|
| 1231 |
+
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
| 1232 |
+
if x != 0:
|
| 1233 |
+
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
| 1234 |
+
if x + samples_from.shape[3] < samples_to.shape[3]:
|
| 1235 |
+
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
| 1236 |
+
rev_mask = torch.ones_like(mask) - mask
|
| 1237 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
| 1238 |
+
samples_out["samples"] = s
|
| 1239 |
+
return (samples_out,)
|
| 1240 |
+
|
| 1241 |
+
class LatentBlend:
|
| 1242 |
+
@classmethod
|
| 1243 |
+
def INPUT_TYPES(s):
|
| 1244 |
+
return {"required": {
|
| 1245 |
+
"samples1": ("LATENT",),
|
| 1246 |
+
"samples2": ("LATENT",),
|
| 1247 |
+
"blend_factor": ("FLOAT", {
|
| 1248 |
+
"default": 0.5,
|
| 1249 |
+
"min": 0,
|
| 1250 |
+
"max": 1,
|
| 1251 |
+
"step": 0.01
|
| 1252 |
+
}),
|
| 1253 |
+
}}
|
| 1254 |
+
|
| 1255 |
+
RETURN_TYPES = ("LATENT",)
|
| 1256 |
+
FUNCTION = "blend"
|
| 1257 |
+
|
| 1258 |
+
CATEGORY = "_for_testing"
|
| 1259 |
+
|
| 1260 |
+
def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
|
| 1261 |
+
|
| 1262 |
+
samples_out = samples1.copy()
|
| 1263 |
+
samples1 = samples1["samples"]
|
| 1264 |
+
samples2 = samples2["samples"]
|
| 1265 |
+
|
| 1266 |
+
if samples1.shape != samples2.shape:
|
| 1267 |
+
samples2.permute(0, 3, 1, 2)
|
| 1268 |
+
samples2 = totoro.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
|
| 1269 |
+
samples2.permute(0, 2, 3, 1)
|
| 1270 |
+
|
| 1271 |
+
samples_blended = self.blend_mode(samples1, samples2, blend_mode)
|
| 1272 |
+
samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
|
| 1273 |
+
samples_out["samples"] = samples_blended
|
| 1274 |
+
return (samples_out,)
|
| 1275 |
+
|
| 1276 |
+
def blend_mode(self, img1, img2, mode):
|
| 1277 |
+
if mode == "normal":
|
| 1278 |
+
return img2
|
| 1279 |
+
else:
|
| 1280 |
+
raise ValueError(f"Unsupported blend mode: {mode}")
|
| 1281 |
+
|
| 1282 |
+
class LatentCrop:
|
| 1283 |
+
@classmethod
|
| 1284 |
+
def INPUT_TYPES(s):
|
| 1285 |
+
return {"required": { "samples": ("LATENT",),
|
| 1286 |
+
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
| 1287 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
| 1288 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1289 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1290 |
+
}}
|
| 1291 |
+
RETURN_TYPES = ("LATENT",)
|
| 1292 |
+
FUNCTION = "crop"
|
| 1293 |
+
|
| 1294 |
+
CATEGORY = "latent/transform"
|
| 1295 |
+
|
| 1296 |
+
def crop(self, samples, width, height, x, y):
|
| 1297 |
+
s = samples.copy()
|
| 1298 |
+
samples = samples['samples']
|
| 1299 |
+
x = x // 8
|
| 1300 |
+
y = y // 8
|
| 1301 |
+
|
| 1302 |
+
#enfonce minimum size of 64
|
| 1303 |
+
if x > (samples.shape[3] - 8):
|
| 1304 |
+
x = samples.shape[3] - 8
|
| 1305 |
+
if y > (samples.shape[2] - 8):
|
| 1306 |
+
y = samples.shape[2] - 8
|
| 1307 |
+
|
| 1308 |
+
new_height = height // 8
|
| 1309 |
+
new_width = width // 8
|
| 1310 |
+
to_x = new_width + x
|
| 1311 |
+
to_y = new_height + y
|
| 1312 |
+
s['samples'] = samples[:,:,y:to_y, x:to_x]
|
| 1313 |
+
return (s,)
|
| 1314 |
+
|
| 1315 |
+
class SetLatentNoiseMask:
|
| 1316 |
+
@classmethod
|
| 1317 |
+
def INPUT_TYPES(s):
|
| 1318 |
+
return {"required": { "samples": ("LATENT",),
|
| 1319 |
+
"mask": ("MASK",),
|
| 1320 |
+
}}
|
| 1321 |
+
RETURN_TYPES = ("LATENT",)
|
| 1322 |
+
FUNCTION = "set_mask"
|
| 1323 |
+
|
| 1324 |
+
CATEGORY = "latent/inpaint"
|
| 1325 |
+
|
| 1326 |
+
def set_mask(self, samples, mask):
|
| 1327 |
+
s = samples.copy()
|
| 1328 |
+
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
|
| 1329 |
+
return (s,)
|
| 1330 |
+
|
| 1331 |
+
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
| 1332 |
+
latent_image = latent["samples"]
|
| 1333 |
+
latent_image = totoro.sample.fix_empty_latent_channels(model, latent_image)
|
| 1334 |
+
|
| 1335 |
+
if disable_noise:
|
| 1336 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
| 1337 |
+
else:
|
| 1338 |
+
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
| 1339 |
+
noise = totoro.sample.prepare_noise(latent_image, seed, batch_inds)
|
| 1340 |
+
|
| 1341 |
+
noise_mask = None
|
| 1342 |
+
if "noise_mask" in latent:
|
| 1343 |
+
noise_mask = latent["noise_mask"]
|
| 1344 |
+
|
| 1345 |
+
callback = latent_preview.prepare_callback(model, steps)
|
| 1346 |
+
disable_pbar = not totoro.utils.PROGRESS_BAR_ENABLED
|
| 1347 |
+
samples = totoro.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
| 1348 |
+
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
| 1349 |
+
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
| 1350 |
+
out = latent.copy()
|
| 1351 |
+
out["samples"] = samples
|
| 1352 |
+
return (out, )
|
| 1353 |
+
|
| 1354 |
+
class KSampler:
|
| 1355 |
+
@classmethod
|
| 1356 |
+
def INPUT_TYPES(s):
|
| 1357 |
+
return {"required":
|
| 1358 |
+
{"model": ("MODEL",),
|
| 1359 |
+
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
| 1360 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
| 1361 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
| 1362 |
+
"sampler_name": (totoro.samplers.KSampler.SAMPLERS, ),
|
| 1363 |
+
"scheduler": (totoro.samplers.KSampler.SCHEDULERS, ),
|
| 1364 |
+
"positive": ("CONDITIONING", ),
|
| 1365 |
+
"negative": ("CONDITIONING", ),
|
| 1366 |
+
"latent_image": ("LATENT", ),
|
| 1367 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
| 1368 |
+
}
|
| 1369 |
+
}
|
| 1370 |
+
|
| 1371 |
+
RETURN_TYPES = ("LATENT",)
|
| 1372 |
+
FUNCTION = "sample"
|
| 1373 |
+
|
| 1374 |
+
CATEGORY = "sampling"
|
| 1375 |
+
|
| 1376 |
+
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
| 1377 |
+
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
| 1378 |
+
|
| 1379 |
+
class KSamplerAdvanced:
|
| 1380 |
+
@classmethod
|
| 1381 |
+
def INPUT_TYPES(s):
|
| 1382 |
+
return {"required":
|
| 1383 |
+
{"model": ("MODEL",),
|
| 1384 |
+
"add_noise": (["enable", "disable"], ),
|
| 1385 |
+
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
| 1386 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
| 1387 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
| 1388 |
+
"sampler_name": (totoro.samplers.KSampler.SAMPLERS, ),
|
| 1389 |
+
"scheduler": (totoro.samplers.KSampler.SCHEDULERS, ),
|
| 1390 |
+
"positive": ("CONDITIONING", ),
|
| 1391 |
+
"negative": ("CONDITIONING", ),
|
| 1392 |
+
"latent_image": ("LATENT", ),
|
| 1393 |
+
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
| 1394 |
+
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
| 1395 |
+
"return_with_leftover_noise": (["disable", "enable"], ),
|
| 1396 |
+
}
|
| 1397 |
+
}
|
| 1398 |
+
|
| 1399 |
+
RETURN_TYPES = ("LATENT",)
|
| 1400 |
+
FUNCTION = "sample"
|
| 1401 |
+
|
| 1402 |
+
CATEGORY = "sampling"
|
| 1403 |
+
|
| 1404 |
+
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
| 1405 |
+
force_full_denoise = True
|
| 1406 |
+
if return_with_leftover_noise == "enable":
|
| 1407 |
+
force_full_denoise = False
|
| 1408 |
+
disable_noise = False
|
| 1409 |
+
if add_noise == "disable":
|
| 1410 |
+
disable_noise = True
|
| 1411 |
+
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
| 1412 |
+
|
| 1413 |
+
class SaveImage:
|
| 1414 |
+
def __init__(self):
|
| 1415 |
+
self.output_dir = folder_paths.get_output_directory()
|
| 1416 |
+
self.type = "output"
|
| 1417 |
+
self.prefix_append = ""
|
| 1418 |
+
self.compress_level = 4
|
| 1419 |
+
|
| 1420 |
+
@classmethod
|
| 1421 |
+
def INPUT_TYPES(s):
|
| 1422 |
+
return {"required":
|
| 1423 |
+
{"images": ("IMAGE", ),
|
| 1424 |
+
"filename_prefix": ("STRING", {"default": "totoroUI"})},
|
| 1425 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
| 1426 |
+
}
|
| 1427 |
+
|
| 1428 |
+
RETURN_TYPES = ()
|
| 1429 |
+
FUNCTION = "save_images"
|
| 1430 |
+
|
| 1431 |
+
OUTPUT_NODE = True
|
| 1432 |
+
|
| 1433 |
+
CATEGORY = "image"
|
| 1434 |
+
|
| 1435 |
+
def save_images(self, images, filename_prefix="totoroUI", prompt=None, extra_pnginfo=None):
|
| 1436 |
+
filename_prefix += self.prefix_append
|
| 1437 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
| 1438 |
+
results = list()
|
| 1439 |
+
for (batch_number, image) in enumerate(images):
|
| 1440 |
+
i = 255. * image.cpu().numpy()
|
| 1441 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
| 1442 |
+
metadata = None
|
| 1443 |
+
if not args.disable_metadata:
|
| 1444 |
+
metadata = PngInfo()
|
| 1445 |
+
if prompt is not None:
|
| 1446 |
+
metadata.add_text("prompt", json.dumps(prompt))
|
| 1447 |
+
if extra_pnginfo is not None:
|
| 1448 |
+
for x in extra_pnginfo:
|
| 1449 |
+
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
| 1450 |
+
|
| 1451 |
+
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
| 1452 |
+
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
| 1453 |
+
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
| 1454 |
+
results.append({
|
| 1455 |
+
"filename": file,
|
| 1456 |
+
"subfolder": subfolder,
|
| 1457 |
+
"type": self.type
|
| 1458 |
+
})
|
| 1459 |
+
counter += 1
|
| 1460 |
+
|
| 1461 |
+
return { "ui": { "images": results } }
|
| 1462 |
+
|
| 1463 |
+
class PreviewImage(SaveImage):
|
| 1464 |
+
def __init__(self):
|
| 1465 |
+
self.output_dir = folder_paths.get_temp_directory()
|
| 1466 |
+
self.type = "temp"
|
| 1467 |
+
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
| 1468 |
+
self.compress_level = 1
|
| 1469 |
+
|
| 1470 |
+
@classmethod
|
| 1471 |
+
def INPUT_TYPES(s):
|
| 1472 |
+
return {"required":
|
| 1473 |
+
{"images": ("IMAGE", ), },
|
| 1474 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
| 1475 |
+
}
|
| 1476 |
+
|
| 1477 |
+
class LoadImage:
|
| 1478 |
+
@classmethod
|
| 1479 |
+
def INPUT_TYPES(s):
|
| 1480 |
+
input_dir = folder_paths.get_input_directory()
|
| 1481 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
| 1482 |
+
return {"required":
|
| 1483 |
+
{"image": (sorted(files), {"image_upload": True})},
|
| 1484 |
+
}
|
| 1485 |
+
|
| 1486 |
+
CATEGORY = "image"
|
| 1487 |
+
|
| 1488 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
| 1489 |
+
FUNCTION = "load_image"
|
| 1490 |
+
def load_image(self, image):
|
| 1491 |
+
image_path = folder_paths.get_annotated_filepath(image)
|
| 1492 |
+
|
| 1493 |
+
img = node_helpers.pillow(Image.open, image_path)
|
| 1494 |
+
|
| 1495 |
+
output_images = []
|
| 1496 |
+
output_masks = []
|
| 1497 |
+
w, h = None, None
|
| 1498 |
+
|
| 1499 |
+
excluded_formats = ['MPO']
|
| 1500 |
+
|
| 1501 |
+
for i in ImageSequence.Iterator(img):
|
| 1502 |
+
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
| 1503 |
+
|
| 1504 |
+
if i.mode == 'I':
|
| 1505 |
+
i = i.point(lambda i: i * (1 / 255))
|
| 1506 |
+
image = i.convert("RGB")
|
| 1507 |
+
|
| 1508 |
+
if len(output_images) == 0:
|
| 1509 |
+
w = image.size[0]
|
| 1510 |
+
h = image.size[1]
|
| 1511 |
+
|
| 1512 |
+
if image.size[0] != w or image.size[1] != h:
|
| 1513 |
+
continue
|
| 1514 |
+
|
| 1515 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 1516 |
+
image = torch.from_numpy(image)[None,]
|
| 1517 |
+
if 'A' in i.getbands():
|
| 1518 |
+
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
| 1519 |
+
mask = 1. - torch.from_numpy(mask)
|
| 1520 |
+
else:
|
| 1521 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
| 1522 |
+
output_images.append(image)
|
| 1523 |
+
output_masks.append(mask.unsqueeze(0))
|
| 1524 |
+
|
| 1525 |
+
if len(output_images) > 1 and img.format not in excluded_formats:
|
| 1526 |
+
output_image = torch.cat(output_images, dim=0)
|
| 1527 |
+
output_mask = torch.cat(output_masks, dim=0)
|
| 1528 |
+
else:
|
| 1529 |
+
output_image = output_images[0]
|
| 1530 |
+
output_mask = output_masks[0]
|
| 1531 |
+
|
| 1532 |
+
return (output_image, output_mask)
|
| 1533 |
+
|
| 1534 |
+
@classmethod
|
| 1535 |
+
def IS_CHANGED(s, image):
|
| 1536 |
+
image_path = folder_paths.get_annotated_filepath(image)
|
| 1537 |
+
m = hashlib.sha256()
|
| 1538 |
+
with open(image_path, 'rb') as f:
|
| 1539 |
+
m.update(f.read())
|
| 1540 |
+
return m.digest().hex()
|
| 1541 |
+
|
| 1542 |
+
@classmethod
|
| 1543 |
+
def VALIDATE_INPUTS(s, image):
|
| 1544 |
+
if not folder_paths.exists_annotated_filepath(image):
|
| 1545 |
+
return "Invalid image file: {}".format(image)
|
| 1546 |
+
|
| 1547 |
+
return True
|
| 1548 |
+
|
| 1549 |
+
class LoadImageMask:
|
| 1550 |
+
_color_channels = ["alpha", "red", "green", "blue"]
|
| 1551 |
+
@classmethod
|
| 1552 |
+
def INPUT_TYPES(s):
|
| 1553 |
+
input_dir = folder_paths.get_input_directory()
|
| 1554 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
| 1555 |
+
return {"required":
|
| 1556 |
+
{"image": (sorted(files), {"image_upload": True}),
|
| 1557 |
+
"channel": (s._color_channels, ), }
|
| 1558 |
+
}
|
| 1559 |
+
|
| 1560 |
+
CATEGORY = "mask"
|
| 1561 |
+
|
| 1562 |
+
RETURN_TYPES = ("MASK",)
|
| 1563 |
+
FUNCTION = "load_image"
|
| 1564 |
+
def load_image(self, image, channel):
|
| 1565 |
+
image_path = folder_paths.get_annotated_filepath(image)
|
| 1566 |
+
i = node_helpers.pillow(Image.open, image_path)
|
| 1567 |
+
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
| 1568 |
+
if i.getbands() != ("R", "G", "B", "A"):
|
| 1569 |
+
if i.mode == 'I':
|
| 1570 |
+
i = i.point(lambda i: i * (1 / 255))
|
| 1571 |
+
i = i.convert("RGBA")
|
| 1572 |
+
mask = None
|
| 1573 |
+
c = channel[0].upper()
|
| 1574 |
+
if c in i.getbands():
|
| 1575 |
+
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
| 1576 |
+
mask = torch.from_numpy(mask)
|
| 1577 |
+
if c == 'A':
|
| 1578 |
+
mask = 1. - mask
|
| 1579 |
+
else:
|
| 1580 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
| 1581 |
+
return (mask.unsqueeze(0),)
|
| 1582 |
+
|
| 1583 |
+
@classmethod
|
| 1584 |
+
def IS_CHANGED(s, image, channel):
|
| 1585 |
+
image_path = folder_paths.get_annotated_filepath(image)
|
| 1586 |
+
m = hashlib.sha256()
|
| 1587 |
+
with open(image_path, 'rb') as f:
|
| 1588 |
+
m.update(f.read())
|
| 1589 |
+
return m.digest().hex()
|
| 1590 |
+
|
| 1591 |
+
@classmethod
|
| 1592 |
+
def VALIDATE_INPUTS(s, image):
|
| 1593 |
+
if not folder_paths.exists_annotated_filepath(image):
|
| 1594 |
+
return "Invalid image file: {}".format(image)
|
| 1595 |
+
|
| 1596 |
+
return True
|
| 1597 |
+
|
| 1598 |
+
class ImageScale:
|
| 1599 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
| 1600 |
+
crop_methods = ["disabled", "center"]
|
| 1601 |
+
|
| 1602 |
+
@classmethod
|
| 1603 |
+
def INPUT_TYPES(s):
|
| 1604 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
| 1605 |
+
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
| 1606 |
+
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
| 1607 |
+
"crop": (s.crop_methods,)}}
|
| 1608 |
+
RETURN_TYPES = ("IMAGE",)
|
| 1609 |
+
FUNCTION = "upscale"
|
| 1610 |
+
|
| 1611 |
+
CATEGORY = "image/upscaling"
|
| 1612 |
+
|
| 1613 |
+
def upscale(self, image, upscale_method, width, height, crop):
|
| 1614 |
+
if width == 0 and height == 0:
|
| 1615 |
+
s = image
|
| 1616 |
+
else:
|
| 1617 |
+
samples = image.movedim(-1,1)
|
| 1618 |
+
|
| 1619 |
+
if width == 0:
|
| 1620 |
+
width = max(1, round(samples.shape[3] * height / samples.shape[2]))
|
| 1621 |
+
elif height == 0:
|
| 1622 |
+
height = max(1, round(samples.shape[2] * width / samples.shape[3]))
|
| 1623 |
+
|
| 1624 |
+
s = totoro.utils.common_upscale(samples, width, height, upscale_method, crop)
|
| 1625 |
+
s = s.movedim(1,-1)
|
| 1626 |
+
return (s,)
|
| 1627 |
+
|
| 1628 |
+
class ImageScaleBy:
|
| 1629 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
| 1630 |
+
|
| 1631 |
+
@classmethod
|
| 1632 |
+
def INPUT_TYPES(s):
|
| 1633 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
| 1634 |
+
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
| 1635 |
+
RETURN_TYPES = ("IMAGE",)
|
| 1636 |
+
FUNCTION = "upscale"
|
| 1637 |
+
|
| 1638 |
+
CATEGORY = "image/upscaling"
|
| 1639 |
+
|
| 1640 |
+
def upscale(self, image, upscale_method, scale_by):
|
| 1641 |
+
samples = image.movedim(-1,1)
|
| 1642 |
+
width = round(samples.shape[3] * scale_by)
|
| 1643 |
+
height = round(samples.shape[2] * scale_by)
|
| 1644 |
+
s = totoro.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
| 1645 |
+
s = s.movedim(1,-1)
|
| 1646 |
+
return (s,)
|
| 1647 |
+
|
| 1648 |
+
class ImageInvert:
|
| 1649 |
+
|
| 1650 |
+
@classmethod
|
| 1651 |
+
def INPUT_TYPES(s):
|
| 1652 |
+
return {"required": { "image": ("IMAGE",)}}
|
| 1653 |
+
|
| 1654 |
+
RETURN_TYPES = ("IMAGE",)
|
| 1655 |
+
FUNCTION = "invert"
|
| 1656 |
+
|
| 1657 |
+
CATEGORY = "image"
|
| 1658 |
+
|
| 1659 |
+
def invert(self, image):
|
| 1660 |
+
s = 1.0 - image
|
| 1661 |
+
return (s,)
|
| 1662 |
+
|
| 1663 |
+
class ImageBatch:
|
| 1664 |
+
|
| 1665 |
+
@classmethod
|
| 1666 |
+
def INPUT_TYPES(s):
|
| 1667 |
+
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
|
| 1668 |
+
|
| 1669 |
+
RETURN_TYPES = ("IMAGE",)
|
| 1670 |
+
FUNCTION = "batch"
|
| 1671 |
+
|
| 1672 |
+
CATEGORY = "image"
|
| 1673 |
+
|
| 1674 |
+
def batch(self, image1, image2):
|
| 1675 |
+
if image1.shape[1:] != image2.shape[1:]:
|
| 1676 |
+
image2 = totoro.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
|
| 1677 |
+
s = torch.cat((image1, image2), dim=0)
|
| 1678 |
+
return (s,)
|
| 1679 |
+
|
| 1680 |
+
class EmptyImage:
|
| 1681 |
+
def __init__(self, device="cpu"):
|
| 1682 |
+
self.device = device
|
| 1683 |
+
|
| 1684 |
+
@classmethod
|
| 1685 |
+
def INPUT_TYPES(s):
|
| 1686 |
+
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
| 1687 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
| 1688 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
| 1689 |
+
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
| 1690 |
+
}}
|
| 1691 |
+
RETURN_TYPES = ("IMAGE",)
|
| 1692 |
+
FUNCTION = "generate"
|
| 1693 |
+
|
| 1694 |
+
CATEGORY = "image"
|
| 1695 |
+
|
| 1696 |
+
def generate(self, width, height, batch_size=1, color=0):
|
| 1697 |
+
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
|
| 1698 |
+
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
|
| 1699 |
+
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
|
| 1700 |
+
return (torch.cat((r, g, b), dim=-1), )
|
| 1701 |
+
|
| 1702 |
+
class ImagePadForOutpaint:
|
| 1703 |
+
|
| 1704 |
+
@classmethod
|
| 1705 |
+
def INPUT_TYPES(s):
|
| 1706 |
+
return {
|
| 1707 |
+
"required": {
|
| 1708 |
+
"image": ("IMAGE",),
|
| 1709 |
+
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1710 |
+
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1711 |
+
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1712 |
+
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
| 1713 |
+
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
| 1714 |
+
}
|
| 1715 |
+
}
|
| 1716 |
+
|
| 1717 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
| 1718 |
+
FUNCTION = "expand_image"
|
| 1719 |
+
|
| 1720 |
+
CATEGORY = "image"
|
| 1721 |
+
|
| 1722 |
+
def expand_image(self, image, left, top, right, bottom, feathering):
|
| 1723 |
+
d1, d2, d3, d4 = image.size()
|
| 1724 |
+
|
| 1725 |
+
new_image = torch.ones(
|
| 1726 |
+
(d1, d2 + top + bottom, d3 + left + right, d4),
|
| 1727 |
+
dtype=torch.float32,
|
| 1728 |
+
) * 0.5
|
| 1729 |
+
|
| 1730 |
+
new_image[:, top:top + d2, left:left + d3, :] = image
|
| 1731 |
+
|
| 1732 |
+
mask = torch.ones(
|
| 1733 |
+
(d2 + top + bottom, d3 + left + right),
|
| 1734 |
+
dtype=torch.float32,
|
| 1735 |
+
)
|
| 1736 |
+
|
| 1737 |
+
t = torch.zeros(
|
| 1738 |
+
(d2, d3),
|
| 1739 |
+
dtype=torch.float32
|
| 1740 |
+
)
|
| 1741 |
+
|
| 1742 |
+
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
|
| 1743 |
+
|
| 1744 |
+
for i in range(d2):
|
| 1745 |
+
for j in range(d3):
|
| 1746 |
+
dt = i if top != 0 else d2
|
| 1747 |
+
db = d2 - i if bottom != 0 else d2
|
| 1748 |
+
|
| 1749 |
+
dl = j if left != 0 else d3
|
| 1750 |
+
dr = d3 - j if right != 0 else d3
|
| 1751 |
+
|
| 1752 |
+
d = min(dt, db, dl, dr)
|
| 1753 |
+
|
| 1754 |
+
if d >= feathering:
|
| 1755 |
+
continue
|
| 1756 |
+
|
| 1757 |
+
v = (feathering - d) / feathering
|
| 1758 |
+
|
| 1759 |
+
t[i, j] = v * v
|
| 1760 |
+
|
| 1761 |
+
mask[top:top + d2, left:left + d3] = t
|
| 1762 |
+
|
| 1763 |
+
return (new_image, mask)
|
| 1764 |
+
|
| 1765 |
+
|
| 1766 |
+
NODE_CLASS_MAPPINGS = {
|
| 1767 |
+
"KSampler": KSampler,
|
| 1768 |
+
"CheckpointLoaderSimple": CheckpointLoaderSimple,
|
| 1769 |
+
"CLIPTextEncode": CLIPTextEncode,
|
| 1770 |
+
"CLIPSetLastLayer": CLIPSetLastLayer,
|
| 1771 |
+
"VAEDecode": VAEDecode,
|
| 1772 |
+
"VAEEncode": VAEEncode,
|
| 1773 |
+
"VAEEncodeForInpaint": VAEEncodeForInpaint,
|
| 1774 |
+
"VAELoader": VAELoader,
|
| 1775 |
+
"EmptyLatentImage": EmptyLatentImage,
|
| 1776 |
+
"LatentUpscale": LatentUpscale,
|
| 1777 |
+
"LatentUpscaleBy": LatentUpscaleBy,
|
| 1778 |
+
"LatentFromBatch": LatentFromBatch,
|
| 1779 |
+
"RepeatLatentBatch": RepeatLatentBatch,
|
| 1780 |
+
"SaveImage": SaveImage,
|
| 1781 |
+
"PreviewImage": PreviewImage,
|
| 1782 |
+
"LoadImage": LoadImage,
|
| 1783 |
+
"LoadImageMask": LoadImageMask,
|
| 1784 |
+
"ImageScale": ImageScale,
|
| 1785 |
+
"ImageScaleBy": ImageScaleBy,
|
| 1786 |
+
"ImageInvert": ImageInvert,
|
| 1787 |
+
"ImageBatch": ImageBatch,
|
| 1788 |
+
"ImagePadForOutpaint": ImagePadForOutpaint,
|
| 1789 |
+
"EmptyImage": EmptyImage,
|
| 1790 |
+
"ConditioningAverage": ConditioningAverage ,
|
| 1791 |
+
"ConditioningCombine": ConditioningCombine,
|
| 1792 |
+
"ConditioningConcat": ConditioningConcat,
|
| 1793 |
+
"ConditioningSetArea": ConditioningSetArea,
|
| 1794 |
+
"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
|
| 1795 |
+
"ConditioningSetAreaStrength": ConditioningSetAreaStrength,
|
| 1796 |
+
"ConditioningSetMask": ConditioningSetMask,
|
| 1797 |
+
"KSamplerAdvanced": KSamplerAdvanced,
|
| 1798 |
+
"SetLatentNoiseMask": SetLatentNoiseMask,
|
| 1799 |
+
"LatentComposite": LatentComposite,
|
| 1800 |
+
"LatentBlend": LatentBlend,
|
| 1801 |
+
"LatentRotate": LatentRotate,
|
| 1802 |
+
"LatentFlip": LatentFlip,
|
| 1803 |
+
"LatentCrop": LatentCrop,
|
| 1804 |
+
"LoraLoader": LoraLoader,
|
| 1805 |
+
"CLIPLoader": CLIPLoader,
|
| 1806 |
+
"UNETLoader": UNETLoader,
|
| 1807 |
+
"DualCLIPLoader": DualCLIPLoader,
|
| 1808 |
+
"CLIPVisionEncode": CLIPVisionEncode,
|
| 1809 |
+
"StyleModelApply": StyleModelApply,
|
| 1810 |
+
"unCLIPConditioning": unCLIPConditioning,
|
| 1811 |
+
"ControlNetApply": ControlNetApply,
|
| 1812 |
+
"ControlNetApplyAdvanced": ControlNetApplyAdvanced,
|
| 1813 |
+
"ControlNetLoader": ControlNetLoader,
|
| 1814 |
+
"DiffControlNetLoader": DiffControlNetLoader,
|
| 1815 |
+
"StyleModelLoader": StyleModelLoader,
|
| 1816 |
+
"CLIPVisionLoader": CLIPVisionLoader,
|
| 1817 |
+
"VAEDecodeTiled": VAEDecodeTiled,
|
| 1818 |
+
"VAEEncodeTiled": VAEEncodeTiled,
|
| 1819 |
+
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
| 1820 |
+
"GLIGENLoader": GLIGENLoader,
|
| 1821 |
+
"GLIGENTextBoxApply": GLIGENTextBoxApply,
|
| 1822 |
+
"InpaintModelConditioning": InpaintModelConditioning,
|
| 1823 |
+
|
| 1824 |
+
"CheckpointLoader": CheckpointLoader,
|
| 1825 |
+
"DiffusersLoader": DiffusersLoader,
|
| 1826 |
+
|
| 1827 |
+
"LoadLatent": LoadLatent,
|
| 1828 |
+
"SaveLatent": SaveLatent,
|
| 1829 |
+
|
| 1830 |
+
"ConditioningZeroOut": ConditioningZeroOut,
|
| 1831 |
+
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
|
| 1832 |
+
"LoraLoaderModelOnly": LoraLoaderModelOnly,
|
| 1833 |
+
}
|
| 1834 |
+
|
| 1835 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 1836 |
+
# Sampling
|
| 1837 |
+
"KSampler": "KSampler",
|
| 1838 |
+
"KSamplerAdvanced": "KSampler (Advanced)",
|
| 1839 |
+
# Loaders
|
| 1840 |
+
"CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
|
| 1841 |
+
"CheckpointLoaderSimple": "Load Checkpoint",
|
| 1842 |
+
"VAELoader": "Load VAE",
|
| 1843 |
+
"LoraLoader": "Load LoRA",
|
| 1844 |
+
"CLIPLoader": "Load CLIP",
|
| 1845 |
+
"ControlNetLoader": "Load ControlNet Model",
|
| 1846 |
+
"DiffControlNetLoader": "Load ControlNet Model (diff)",
|
| 1847 |
+
"StyleModelLoader": "Load Style Model",
|
| 1848 |
+
"CLIPVisionLoader": "Load CLIP Vision",
|
| 1849 |
+
"UpscaleModelLoader": "Load Upscale Model",
|
| 1850 |
+
"UNETLoader": "Load Diffusion Model",
|
| 1851 |
+
# Conditioning
|
| 1852 |
+
"CLIPVisionEncode": "CLIP Vision Encode",
|
| 1853 |
+
"StyleModelApply": "Apply Style Model",
|
| 1854 |
+
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
|
| 1855 |
+
"CLIPSetLastLayer": "CLIP Set Last Layer",
|
| 1856 |
+
"ConditioningCombine": "Conditioning (Combine)",
|
| 1857 |
+
"ConditioningAverage ": "Conditioning (Average)",
|
| 1858 |
+
"ConditioningConcat": "Conditioning (Concat)",
|
| 1859 |
+
"ConditioningSetArea": "Conditioning (Set Area)",
|
| 1860 |
+
"ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
|
| 1861 |
+
"ConditioningSetMask": "Conditioning (Set Mask)",
|
| 1862 |
+
"ControlNetApply": "Apply ControlNet",
|
| 1863 |
+
"ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
|
| 1864 |
+
# Latent
|
| 1865 |
+
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
|
| 1866 |
+
"SetLatentNoiseMask": "Set Latent Noise Mask",
|
| 1867 |
+
"VAEDecode": "VAE Decode",
|
| 1868 |
+
"VAEEncode": "VAE Encode",
|
| 1869 |
+
"LatentRotate": "Rotate Latent",
|
| 1870 |
+
"LatentFlip": "Flip Latent",
|
| 1871 |
+
"LatentCrop": "Crop Latent",
|
| 1872 |
+
"EmptyLatentImage": "Empty Latent Image",
|
| 1873 |
+
"LatentUpscale": "Upscale Latent",
|
| 1874 |
+
"LatentUpscaleBy": "Upscale Latent By",
|
| 1875 |
+
"LatentComposite": "Latent Composite",
|
| 1876 |
+
"LatentBlend": "Latent Blend",
|
| 1877 |
+
"LatentFromBatch" : "Latent From Batch",
|
| 1878 |
+
"RepeatLatentBatch": "Repeat Latent Batch",
|
| 1879 |
+
# Image
|
| 1880 |
+
"SaveImage": "Save Image",
|
| 1881 |
+
"PreviewImage": "Preview Image",
|
| 1882 |
+
"LoadImage": "Load Image",
|
| 1883 |
+
"LoadImageMask": "Load Image (as Mask)",
|
| 1884 |
+
"ImageScale": "Upscale Image",
|
| 1885 |
+
"ImageScaleBy": "Upscale Image By",
|
| 1886 |
+
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
| 1887 |
+
"ImageInvert": "Invert Image",
|
| 1888 |
+
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
| 1889 |
+
"ImageBatch": "Batch Images",
|
| 1890 |
+
# _for_testing
|
| 1891 |
+
"VAEDecodeTiled": "VAE Decode (Tiled)",
|
| 1892 |
+
"VAEEncodeTiled": "VAE Encode (Tiled)",
|
| 1893 |
+
}
|
| 1894 |
+
|
| 1895 |
+
EXTENSION_WEB_DIRS = {}
|
| 1896 |
+
|
| 1897 |
+
|
| 1898 |
+
def get_module_name(module_path: str) -> str:
|
| 1899 |
+
"""
|
| 1900 |
+
Returns the module name based on the given module path.
|
| 1901 |
+
Examples:
|
| 1902 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node.py") -> "my_custom_node"
|
| 1903 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node") -> "my_custom_node"
|
| 1904 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node/") -> "my_custom_node"
|
| 1905 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node/__init__.py") -> "my_custom_node"
|
| 1906 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node/__init__") -> "my_custom_node"
|
| 1907 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node/__init__/") -> "my_custom_node"
|
| 1908 |
+
get_module_name("C:/Users/username/totoroUI/custom_nodes/my_custom_node.disabled") -> "custom_nodes
|
| 1909 |
+
Args:
|
| 1910 |
+
module_path (str): The path of the module.
|
| 1911 |
+
Returns:
|
| 1912 |
+
str: The module name.
|
| 1913 |
+
"""
|
| 1914 |
+
base_path = os.path.basename(module_path)
|
| 1915 |
+
if os.path.isfile(module_path):
|
| 1916 |
+
base_path = os.path.splitext(base_path)[0]
|
| 1917 |
+
return base_path
|
| 1918 |
+
|
| 1919 |
+
|
| 1920 |
+
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
|
| 1921 |
+
module_name = os.path.basename(module_path)
|
| 1922 |
+
if os.path.isfile(module_path):
|
| 1923 |
+
sp = os.path.splitext(module_path)
|
| 1924 |
+
module_name = sp[0]
|
| 1925 |
+
try:
|
| 1926 |
+
logging.debug("Trying to load custom node {}".format(module_path))
|
| 1927 |
+
if os.path.isfile(module_path):
|
| 1928 |
+
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
| 1929 |
+
module_dir = os.path.split(module_path)[0]
|
| 1930 |
+
else:
|
| 1931 |
+
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
| 1932 |
+
module_dir = module_path
|
| 1933 |
+
|
| 1934 |
+
module = importlib.util.module_from_spec(module_spec)
|
| 1935 |
+
sys.modules[module_name] = module
|
| 1936 |
+
module_spec.loader.exec_module(module)
|
| 1937 |
+
|
| 1938 |
+
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
|
| 1939 |
+
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
|
| 1940 |
+
if os.path.isdir(web_dir):
|
| 1941 |
+
EXTENSION_WEB_DIRS[module_name] = web_dir
|
| 1942 |
+
|
| 1943 |
+
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
| 1944 |
+
for name, node_cls in module.NODE_CLASS_MAPPINGS.items():
|
| 1945 |
+
if name not in ignore:
|
| 1946 |
+
NODE_CLASS_MAPPINGS[name] = node_cls
|
| 1947 |
+
node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
|
| 1948 |
+
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
|
| 1949 |
+
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
|
| 1950 |
+
return True
|
| 1951 |
+
else:
|
| 1952 |
+
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
|
| 1953 |
+
return False
|
| 1954 |
+
except Exception as e:
|
| 1955 |
+
logging.warning(traceback.format_exc())
|
| 1956 |
+
logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
|
| 1957 |
+
return False
|
| 1958 |
+
|
| 1959 |
+
def init_external_custom_nodes():
|
| 1960 |
+
"""
|
| 1961 |
+
Initializes the external custom nodes.
|
| 1962 |
+
|
| 1963 |
+
This function loads custom nodes from the specified folder paths and imports them into the application.
|
| 1964 |
+
It measures the import times for each custom node and logs the results.
|
| 1965 |
+
|
| 1966 |
+
Returns:
|
| 1967 |
+
None
|
| 1968 |
+
"""
|
| 1969 |
+
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
|
| 1970 |
+
node_paths = folder_paths.get_folder_paths("custom_nodes")
|
| 1971 |
+
node_import_times = []
|
| 1972 |
+
for custom_node_path in node_paths:
|
| 1973 |
+
possible_modules = os.listdir(os.path.realpath(custom_node_path))
|
| 1974 |
+
if "__pycache__" in possible_modules:
|
| 1975 |
+
possible_modules.remove("__pycache__")
|
| 1976 |
+
|
| 1977 |
+
for possible_module in possible_modules:
|
| 1978 |
+
module_path = os.path.join(custom_node_path, possible_module)
|
| 1979 |
+
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
| 1980 |
+
if module_path.endswith(".disabled"): continue
|
| 1981 |
+
time_before = time.perf_counter()
|
| 1982 |
+
success = load_custom_node(module_path, base_node_names, module_parent="custom_nodes")
|
| 1983 |
+
node_import_times.append((time.perf_counter() - time_before, module_path, success))
|
| 1984 |
+
|
| 1985 |
+
if len(node_import_times) > 0:
|
| 1986 |
+
logging.info("\nImport times for custom nodes:")
|
| 1987 |
+
for n in sorted(node_import_times):
|
| 1988 |
+
if n[2]:
|
| 1989 |
+
import_message = ""
|
| 1990 |
+
else:
|
| 1991 |
+
import_message = " (IMPORT FAILED)"
|
| 1992 |
+
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
|
| 1993 |
+
logging.info("")
|
| 1994 |
+
|
| 1995 |
+
def init_builtin_extra_nodes():
|
| 1996 |
+
"""
|
| 1997 |
+
Initializes the built-in extra nodes in totoroUI.
|
| 1998 |
+
|
| 1999 |
+
This function loads the extra node files located in the "totoro_extras" directory and imports them into totoroUI.
|
| 2000 |
+
If any of the extra node files fail to import, a warning message is logged.
|
| 2001 |
+
|
| 2002 |
+
Returns:
|
| 2003 |
+
None
|
| 2004 |
+
"""
|
| 2005 |
+
extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "totoro_extras")
|
| 2006 |
+
extras_files = [
|
| 2007 |
+
"nodes_latent.py",
|
| 2008 |
+
"nodes_hypernetwork.py",
|
| 2009 |
+
"nodes_upscale_model.py",
|
| 2010 |
+
"nodes_post_processing.py",
|
| 2011 |
+
"nodes_mask.py",
|
| 2012 |
+
"nodes_compositing.py",
|
| 2013 |
+
"nodes_rebatch.py",
|
| 2014 |
+
"nodes_model_merging.py",
|
| 2015 |
+
"nodes_tomesd.py",
|
| 2016 |
+
"nodes_clip_sdxl.py",
|
| 2017 |
+
"nodes_canny.py",
|
| 2018 |
+
"nodes_freelunch.py",
|
| 2019 |
+
"nodes_custom_sampler.py",
|
| 2020 |
+
"nodes_hypertile.py",
|
| 2021 |
+
"nodes_model_advanced.py",
|
| 2022 |
+
"nodes_model_downscale.py",
|
| 2023 |
+
"nodes_images.py",
|
| 2024 |
+
"nodes_video_model.py",
|
| 2025 |
+
"nodes_sag.py",
|
| 2026 |
+
"nodes_perpneg.py",
|
| 2027 |
+
"nodes_stable3d.py",
|
| 2028 |
+
"nodes_sdupscale.py",
|
| 2029 |
+
"nodes_photomaker.py",
|
| 2030 |
+
"nodes_cond.py",
|
| 2031 |
+
"nodes_morphology.py",
|
| 2032 |
+
"nodes_stable_cascade.py",
|
| 2033 |
+
"nodes_differential_diffusion.py",
|
| 2034 |
+
"nodes_ip2p.py",
|
| 2035 |
+
"nodes_model_merging_model_specific.py",
|
| 2036 |
+
"nodes_pag.py",
|
| 2037 |
+
"nodes_align_your_steps.py",
|
| 2038 |
+
"nodes_attention_multiply.py",
|
| 2039 |
+
"nodes_advanced_samplers.py",
|
| 2040 |
+
"nodes_webcam.py",
|
| 2041 |
+
"nodes_audio.py",
|
| 2042 |
+
"nodes_sd3.py",
|
| 2043 |
+
"nodes_gits.py",
|
| 2044 |
+
"nodes_controlnet.py",
|
| 2045 |
+
"nodes_hunyuan.py",
|
| 2046 |
+
]
|
| 2047 |
+
|
| 2048 |
+
import_failed = []
|
| 2049 |
+
for node_file in extras_files:
|
| 2050 |
+
if not load_custom_node(os.path.join(extras_dir, node_file), module_parent="totoro_extras"):
|
| 2051 |
+
import_failed.append(node_file)
|
| 2052 |
+
|
| 2053 |
+
return import_failed
|
| 2054 |
+
|
| 2055 |
+
|
| 2056 |
+
def init_extra_nodes(init_custom_nodes=True):
|
| 2057 |
+
import_failed = init_builtin_extra_nodes()
|
| 2058 |
+
|
| 2059 |
+
if init_custom_nodes:
|
| 2060 |
+
init_external_custom_nodes()
|
| 2061 |
+
else:
|
| 2062 |
+
logging.info("Skipping loading of custom nodes")
|
| 2063 |
+
|
| 2064 |
+
if len(import_failed) > 0:
|
| 2065 |
+
logging.warning("WARNING: some totoro_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
|
| 2066 |
+
for node in import_failed:
|
| 2067 |
+
logging.warning("IMPORT FAILED: {}".format(node))
|
| 2068 |
+
logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated totoroUI.")
|
| 2069 |
+
if args.windows_standalone_build:
|
| 2070 |
+
logging.warning("Please run the update script: update/update_totoroui.bat")
|
| 2071 |
+
else:
|
| 2072 |
+
logging.warning("Please do a: pip install -r requirements.txt")
|
| 2073 |
+
logging.warning("")
|
totoro/__pycache__/checkpoint_pickle.cpython-311.pyc
ADDED
|
Binary file (1.08 kB). View file
|
|
|
totoro/__pycache__/cli_args.cpython-311.pyc
ADDED
|
Binary file (14.3 kB). View file
|
|
|
totoro/__pycache__/clip_model.cpython-311.pyc
ADDED
|
Binary file (18 kB). View file
|
|
|
totoro/__pycache__/clip_vision.cpython-311.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
totoro/__pycache__/conds.cpython-311.pyc
ADDED
|
Binary file (5.49 kB). View file
|
|
|
totoro/__pycache__/controlnet.cpython-311.pyc
ADDED
|
Binary file (38.2 kB). View file
|
|
|
totoro/__pycache__/diffusers_convert.cpython-311.pyc
ADDED
|
Binary file (13.1 kB). View file
|
|
|
totoro/__pycache__/diffusers_load.cpython-311.pyc
ADDED
|
Binary file (2.36 kB). View file
|
|
|
totoro/__pycache__/gligen.cpython-311.pyc
ADDED
|
Binary file (22 kB). View file
|
|
|
totoro/__pycache__/latent_formats.cpython-311.pyc
ADDED
|
Binary file (8.56 kB). View file
|
|
|
totoro/__pycache__/lora.cpython-311.pyc
ADDED
|
Binary file (15.7 kB). View file
|
|
|
totoro/__pycache__/model_base.cpython-311.pyc
ADDED
|
Binary file (53.9 kB). View file
|
|
|
totoro/__pycache__/model_detection.cpython-311.pyc
ADDED
|
Binary file (30.2 kB). View file
|
|
|
totoro/__pycache__/model_management.cpython-311.pyc
ADDED
|
Binary file (40.8 kB). View file
|
|
|
totoro/__pycache__/model_patcher.cpython-311.pyc
ADDED
|
Binary file (34 kB). View file
|
|
|
totoro/__pycache__/model_sampling.cpython-311.pyc
ADDED
|
Binary file (21.7 kB). View file
|
|
|
totoro/__pycache__/ops.cpython-311.pyc
ADDED
|
Binary file (15.6 kB). View file
|
|
|
totoro/__pycache__/options.cpython-311.pyc
ADDED
|
Binary file (320 Bytes). View file
|
|
|
totoro/__pycache__/sample.cpython-311.pyc
ADDED
|
Binary file (4.74 kB). View file
|
|
|
totoro/__pycache__/sampler_helpers.cpython-311.pyc
ADDED
|
Binary file (4.64 kB). View file
|
|
|
totoro/__pycache__/samplers.cpython-311.pyc
ADDED
|
Binary file (45.7 kB). View file
|
|
|
totoro/__pycache__/sd.cpython-311.pyc
ADDED
|
Binary file (47.3 kB). View file
|
|
|
totoro/__pycache__/sd1_clip.cpython-311.pyc
ADDED
|
Binary file (34.6 kB). View file
|
|
|
totoro/__pycache__/sdxl_clip.cpython-311.pyc
ADDED
|
Binary file (9.91 kB). View file
|
|
|
totoro/__pycache__/supported_models.cpython-311.pyc
ADDED
|
Binary file (30.8 kB). View file
|
|
|
totoro/__pycache__/supported_models_base.cpython-311.pyc
ADDED
|
Binary file (5.92 kB). View file
|
|
|
totoro/__pycache__/types.cpython-311.pyc
ADDED
|
Binary file (1.97 kB). View file
|
|
|
totoro/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (41.1 kB). View file
|
|
|
totoro/checkpoint_pickle.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
load = pickle.load
|
| 4 |
+
|
| 5 |
+
class Empty:
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
class Unpickler(pickle.Unpickler):
|
| 9 |
+
def find_class(self, module, name):
|
| 10 |
+
#TODO: safe unpickle
|
| 11 |
+
if module.startswith("pytorch_lightning"):
|
| 12 |
+
return Empty
|
| 13 |
+
return super().find_class(module, name)
|
totoro/cldm/__pycache__/cldm.cpython-311.pyc
ADDED
|
Binary file (23 kB). View file
|
|
|
totoro/cldm/__pycache__/control_types.cpython-311.pyc
ADDED
|
Binary file (379 Bytes). View file
|
|
|
totoro/cldm/__pycache__/mmdit.cpython-311.pyc
ADDED
|
Binary file (3.93 kB). View file
|
|
|
totoro/cldm/cldm.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
| 2 |
+
#and modified
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from ..ldm.modules.diffusionmodules.util import (
|
| 9 |
+
zero_module,
|
| 10 |
+
timestep_embedding,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
from ..ldm.modules.attention import SpatialTransformer
|
| 14 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
| 15 |
+
from ..ldm.util import exists
|
| 16 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
| 17 |
+
from collections import OrderedDict
|
| 18 |
+
import totoro.ops
|
| 19 |
+
from totoro.ldm.modules.attention import optimized_attention
|
| 20 |
+
|
| 21 |
+
class OptimizedAttention(nn.Module):
|
| 22 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.heads = nhead
|
| 25 |
+
self.c = c
|
| 26 |
+
|
| 27 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
| 28 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
x = self.in_proj(x)
|
| 32 |
+
q, k, v = x.split(self.c, dim=2)
|
| 33 |
+
out = optimized_attention(q, k, v, self.heads)
|
| 34 |
+
return self.out_proj(out)
|
| 35 |
+
|
| 36 |
+
class QuickGELU(nn.Module):
|
| 37 |
+
def forward(self, x: torch.Tensor):
|
| 38 |
+
return x * torch.sigmoid(1.702 * x)
|
| 39 |
+
|
| 40 |
+
class ResBlockUnionControlnet(nn.Module):
|
| 41 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
| 44 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 45 |
+
self.mlp = nn.Sequential(
|
| 46 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
| 47 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
| 48 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 49 |
+
|
| 50 |
+
def attention(self, x: torch.Tensor):
|
| 51 |
+
return self.attn(x)
|
| 52 |
+
|
| 53 |
+
def forward(self, x: torch.Tensor):
|
| 54 |
+
x = x + self.attention(self.ln_1(x))
|
| 55 |
+
x = x + self.mlp(self.ln_2(x))
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
class ControlledUnetModel(UNetModel):
|
| 59 |
+
#implemented in the ldm unet
|
| 60 |
+
pass
|
| 61 |
+
|
| 62 |
+
class ControlNet(nn.Module):
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
image_size,
|
| 66 |
+
in_channels,
|
| 67 |
+
model_channels,
|
| 68 |
+
hint_channels,
|
| 69 |
+
num_res_blocks,
|
| 70 |
+
dropout=0,
|
| 71 |
+
channel_mult=(1, 2, 4, 8),
|
| 72 |
+
conv_resample=True,
|
| 73 |
+
dims=2,
|
| 74 |
+
num_classes=None,
|
| 75 |
+
use_checkpoint=False,
|
| 76 |
+
dtype=torch.float32,
|
| 77 |
+
num_heads=-1,
|
| 78 |
+
num_head_channels=-1,
|
| 79 |
+
num_heads_upsample=-1,
|
| 80 |
+
use_scale_shift_norm=False,
|
| 81 |
+
resblock_updown=False,
|
| 82 |
+
use_new_attention_order=False,
|
| 83 |
+
use_spatial_transformer=False, # custom transformer support
|
| 84 |
+
transformer_depth=1, # custom transformer support
|
| 85 |
+
context_dim=None, # custom transformer support
|
| 86 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 87 |
+
legacy=True,
|
| 88 |
+
disable_self_attentions=None,
|
| 89 |
+
num_attention_blocks=None,
|
| 90 |
+
disable_middle_self_attn=False,
|
| 91 |
+
use_linear_in_transformer=False,
|
| 92 |
+
adm_in_channels=None,
|
| 93 |
+
transformer_depth_middle=None,
|
| 94 |
+
transformer_depth_output=None,
|
| 95 |
+
attn_precision=None,
|
| 96 |
+
union_controlnet_num_control_type=None,
|
| 97 |
+
device=None,
|
| 98 |
+
operations=totoro.ops.disable_weight_init,
|
| 99 |
+
**kwargs,
|
| 100 |
+
):
|
| 101 |
+
super().__init__()
|
| 102 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
| 103 |
+
if use_spatial_transformer:
|
| 104 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 105 |
+
|
| 106 |
+
if context_dim is not None:
|
| 107 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 108 |
+
# from omegaconf.listconfig import ListConfig
|
| 109 |
+
# if type(context_dim) == ListConfig:
|
| 110 |
+
# context_dim = list(context_dim)
|
| 111 |
+
|
| 112 |
+
if num_heads_upsample == -1:
|
| 113 |
+
num_heads_upsample = num_heads
|
| 114 |
+
|
| 115 |
+
if num_heads == -1:
|
| 116 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 117 |
+
|
| 118 |
+
if num_head_channels == -1:
|
| 119 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 120 |
+
|
| 121 |
+
self.dims = dims
|
| 122 |
+
self.image_size = image_size
|
| 123 |
+
self.in_channels = in_channels
|
| 124 |
+
self.model_channels = model_channels
|
| 125 |
+
|
| 126 |
+
if isinstance(num_res_blocks, int):
|
| 127 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 128 |
+
else:
|
| 129 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 130 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 131 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 132 |
+
self.num_res_blocks = num_res_blocks
|
| 133 |
+
|
| 134 |
+
if disable_self_attentions is not None:
|
| 135 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 136 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 137 |
+
if num_attention_blocks is not None:
|
| 138 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 139 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 140 |
+
|
| 141 |
+
transformer_depth = transformer_depth[:]
|
| 142 |
+
|
| 143 |
+
self.dropout = dropout
|
| 144 |
+
self.channel_mult = channel_mult
|
| 145 |
+
self.conv_resample = conv_resample
|
| 146 |
+
self.num_classes = num_classes
|
| 147 |
+
self.use_checkpoint = use_checkpoint
|
| 148 |
+
self.dtype = dtype
|
| 149 |
+
self.num_heads = num_heads
|
| 150 |
+
self.num_head_channels = num_head_channels
|
| 151 |
+
self.num_heads_upsample = num_heads_upsample
|
| 152 |
+
self.predict_codebook_ids = n_embed is not None
|
| 153 |
+
|
| 154 |
+
time_embed_dim = model_channels * 4
|
| 155 |
+
self.time_embed = nn.Sequential(
|
| 156 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 157 |
+
nn.SiLU(),
|
| 158 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if self.num_classes is not None:
|
| 162 |
+
if isinstance(self.num_classes, int):
|
| 163 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 164 |
+
elif self.num_classes == "continuous":
|
| 165 |
+
print("setting up linear c_adm embedding layer")
|
| 166 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 167 |
+
elif self.num_classes == "sequential":
|
| 168 |
+
assert adm_in_channels is not None
|
| 169 |
+
self.label_emb = nn.Sequential(
|
| 170 |
+
nn.Sequential(
|
| 171 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 172 |
+
nn.SiLU(),
|
| 173 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 174 |
+
)
|
| 175 |
+
)
|
| 176 |
+
else:
|
| 177 |
+
raise ValueError()
|
| 178 |
+
|
| 179 |
+
self.input_blocks = nn.ModuleList(
|
| 180 |
+
[
|
| 181 |
+
TimestepEmbedSequential(
|
| 182 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 183 |
+
)
|
| 184 |
+
]
|
| 185 |
+
)
|
| 186 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
| 187 |
+
|
| 188 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 189 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 190 |
+
nn.SiLU(),
|
| 191 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 192 |
+
nn.SiLU(),
|
| 193 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 194 |
+
nn.SiLU(),
|
| 195 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
| 196 |
+
nn.SiLU(),
|
| 197 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 198 |
+
nn.SiLU(),
|
| 199 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
| 200 |
+
nn.SiLU(),
|
| 201 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 202 |
+
nn.SiLU(),
|
| 203 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
self._feature_size = model_channels
|
| 207 |
+
input_block_chans = [model_channels]
|
| 208 |
+
ch = model_channels
|
| 209 |
+
ds = 1
|
| 210 |
+
for level, mult in enumerate(channel_mult):
|
| 211 |
+
for nr in range(self.num_res_blocks[level]):
|
| 212 |
+
layers = [
|
| 213 |
+
ResBlock(
|
| 214 |
+
ch,
|
| 215 |
+
time_embed_dim,
|
| 216 |
+
dropout,
|
| 217 |
+
out_channels=mult * model_channels,
|
| 218 |
+
dims=dims,
|
| 219 |
+
use_checkpoint=use_checkpoint,
|
| 220 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 221 |
+
dtype=self.dtype,
|
| 222 |
+
device=device,
|
| 223 |
+
operations=operations,
|
| 224 |
+
)
|
| 225 |
+
]
|
| 226 |
+
ch = mult * model_channels
|
| 227 |
+
num_transformers = transformer_depth.pop(0)
|
| 228 |
+
if num_transformers > 0:
|
| 229 |
+
if num_head_channels == -1:
|
| 230 |
+
dim_head = ch // num_heads
|
| 231 |
+
else:
|
| 232 |
+
num_heads = ch // num_head_channels
|
| 233 |
+
dim_head = num_head_channels
|
| 234 |
+
if legacy:
|
| 235 |
+
#num_heads = 1
|
| 236 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 237 |
+
if exists(disable_self_attentions):
|
| 238 |
+
disabled_sa = disable_self_attentions[level]
|
| 239 |
+
else:
|
| 240 |
+
disabled_sa = False
|
| 241 |
+
|
| 242 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 243 |
+
layers.append(
|
| 244 |
+
SpatialTransformer(
|
| 245 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
| 246 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 247 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 248 |
+
)
|
| 249 |
+
)
|
| 250 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 251 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 252 |
+
self._feature_size += ch
|
| 253 |
+
input_block_chans.append(ch)
|
| 254 |
+
if level != len(channel_mult) - 1:
|
| 255 |
+
out_ch = ch
|
| 256 |
+
self.input_blocks.append(
|
| 257 |
+
TimestepEmbedSequential(
|
| 258 |
+
ResBlock(
|
| 259 |
+
ch,
|
| 260 |
+
time_embed_dim,
|
| 261 |
+
dropout,
|
| 262 |
+
out_channels=out_ch,
|
| 263 |
+
dims=dims,
|
| 264 |
+
use_checkpoint=use_checkpoint,
|
| 265 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 266 |
+
down=True,
|
| 267 |
+
dtype=self.dtype,
|
| 268 |
+
device=device,
|
| 269 |
+
operations=operations
|
| 270 |
+
)
|
| 271 |
+
if resblock_updown
|
| 272 |
+
else Downsample(
|
| 273 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
| 274 |
+
)
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
ch = out_ch
|
| 278 |
+
input_block_chans.append(ch)
|
| 279 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 280 |
+
ds *= 2
|
| 281 |
+
self._feature_size += ch
|
| 282 |
+
|
| 283 |
+
if num_head_channels == -1:
|
| 284 |
+
dim_head = ch // num_heads
|
| 285 |
+
else:
|
| 286 |
+
num_heads = ch // num_head_channels
|
| 287 |
+
dim_head = num_head_channels
|
| 288 |
+
if legacy:
|
| 289 |
+
#num_heads = 1
|
| 290 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 291 |
+
mid_block = [
|
| 292 |
+
ResBlock(
|
| 293 |
+
ch,
|
| 294 |
+
time_embed_dim,
|
| 295 |
+
dropout,
|
| 296 |
+
dims=dims,
|
| 297 |
+
use_checkpoint=use_checkpoint,
|
| 298 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 299 |
+
dtype=self.dtype,
|
| 300 |
+
device=device,
|
| 301 |
+
operations=operations
|
| 302 |
+
)]
|
| 303 |
+
if transformer_depth_middle >= 0:
|
| 304 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
| 305 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
| 306 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 307 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 308 |
+
),
|
| 309 |
+
ResBlock(
|
| 310 |
+
ch,
|
| 311 |
+
time_embed_dim,
|
| 312 |
+
dropout,
|
| 313 |
+
dims=dims,
|
| 314 |
+
use_checkpoint=use_checkpoint,
|
| 315 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 316 |
+
dtype=self.dtype,
|
| 317 |
+
device=device,
|
| 318 |
+
operations=operations
|
| 319 |
+
)]
|
| 320 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
| 321 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
| 322 |
+
self._feature_size += ch
|
| 323 |
+
|
| 324 |
+
if union_controlnet_num_control_type is not None:
|
| 325 |
+
self.num_control_type = union_controlnet_num_control_type
|
| 326 |
+
num_trans_channel = 320
|
| 327 |
+
num_trans_head = 8
|
| 328 |
+
num_trans_layer = 1
|
| 329 |
+
num_proj_channel = 320
|
| 330 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
| 331 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
| 332 |
+
|
| 333 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
| 334 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
| 335 |
+
#-----------------------------------------------------------------------------------------------------
|
| 336 |
+
|
| 337 |
+
control_add_embed_dim = 256
|
| 338 |
+
class ControlAddEmbedding(nn.Module):
|
| 339 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
| 340 |
+
super().__init__()
|
| 341 |
+
self.num_control_type = num_control_type
|
| 342 |
+
self.in_dim = in_dim
|
| 343 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
| 344 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
| 345 |
+
def forward(self, control_type, dtype, device):
|
| 346 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
| 347 |
+
c_type[control_type] = 1.0
|
| 348 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
| 349 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
| 350 |
+
|
| 351 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
| 352 |
+
else:
|
| 353 |
+
self.task_embedding = None
|
| 354 |
+
self.control_add_embedding = None
|
| 355 |
+
|
| 356 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
| 357 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
| 358 |
+
inputs = []
|
| 359 |
+
condition_list = []
|
| 360 |
+
|
| 361 |
+
for idx in range(min(1, len(control_type))):
|
| 362 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
| 363 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
| 364 |
+
if idx < len(control_type):
|
| 365 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
| 366 |
+
|
| 367 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 368 |
+
condition_list.append(controlnet_cond)
|
| 369 |
+
|
| 370 |
+
x = torch.cat(inputs, dim=1)
|
| 371 |
+
x = self.transformer_layes(x)
|
| 372 |
+
controlnet_cond_fuser = None
|
| 373 |
+
for idx in range(len(control_type)):
|
| 374 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
| 375 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
| 376 |
+
o = condition_list[idx] + alpha
|
| 377 |
+
if controlnet_cond_fuser is None:
|
| 378 |
+
controlnet_cond_fuser = o
|
| 379 |
+
else:
|
| 380 |
+
controlnet_cond_fuser += o
|
| 381 |
+
return controlnet_cond_fuser
|
| 382 |
+
|
| 383 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
| 384 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
| 385 |
+
|
| 386 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
| 387 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 388 |
+
emb = self.time_embed(t_emb)
|
| 389 |
+
|
| 390 |
+
guided_hint = None
|
| 391 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
| 392 |
+
control_type = kwargs.get("control_type", [])
|
| 393 |
+
|
| 394 |
+
if any([c >= self.num_control_type for c in control_type]):
|
| 395 |
+
max_type = max(control_type)
|
| 396 |
+
max_type_name = {
|
| 397 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
| 398 |
+
}[max_type]
|
| 399 |
+
raise ValueError(
|
| 400 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
| 401 |
+
f"({self.num_control_type}) supported.\n" +
|
| 402 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
| 403 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
| 407 |
+
if len(control_type) > 0:
|
| 408 |
+
if len(hint.shape) < 5:
|
| 409 |
+
hint = hint.unsqueeze(dim=0)
|
| 410 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
| 411 |
+
|
| 412 |
+
if guided_hint is None:
|
| 413 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
| 414 |
+
|
| 415 |
+
out_output = []
|
| 416 |
+
out_middle = []
|
| 417 |
+
|
| 418 |
+
hs = []
|
| 419 |
+
if self.num_classes is not None:
|
| 420 |
+
assert y.shape[0] == x.shape[0]
|
| 421 |
+
emb = emb + self.label_emb(y)
|
| 422 |
+
|
| 423 |
+
h = x
|
| 424 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
| 425 |
+
if guided_hint is not None:
|
| 426 |
+
h = module(h, emb, context)
|
| 427 |
+
h += guided_hint
|
| 428 |
+
guided_hint = None
|
| 429 |
+
else:
|
| 430 |
+
h = module(h, emb, context)
|
| 431 |
+
out_output.append(zero_conv(h, emb, context))
|
| 432 |
+
|
| 433 |
+
h = self.middle_block(h, emb, context)
|
| 434 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
| 435 |
+
|
| 436 |
+
return {"middle": out_middle, "output": out_output}
|
| 437 |
+
|
totoro/cldm/control_types.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
UNION_CONTROLNET_TYPES = {
|
| 2 |
+
"openpose": 0,
|
| 3 |
+
"depth": 1,
|
| 4 |
+
"hed/pidi/scribble/ted": 2,
|
| 5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
| 6 |
+
"normal": 4,
|
| 7 |
+
"segment": 5,
|
| 8 |
+
"tile": 6,
|
| 9 |
+
"repaint": 7,
|
| 10 |
+
}
|
totoro/cldm/mmdit.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Dict, Optional
|
| 3 |
+
import totoro.ldm.modules.diffusionmodules.mmdit
|
| 4 |
+
|
| 5 |
+
class ControlNet(totoro.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_blocks = None,
|
| 9 |
+
dtype = None,
|
| 10 |
+
device = None,
|
| 11 |
+
operations = None,
|
| 12 |
+
**kwargs,
|
| 13 |
+
):
|
| 14 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
| 15 |
+
# controlnet_blocks
|
| 16 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
| 17 |
+
for _ in range(len(self.joint_blocks)):
|
| 18 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
| 19 |
+
|
| 20 |
+
self.pos_embed_input = totoro.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
| 21 |
+
None,
|
| 22 |
+
self.patch_size,
|
| 23 |
+
self.in_channels,
|
| 24 |
+
self.hidden_size,
|
| 25 |
+
bias=True,
|
| 26 |
+
strict_img_size=False,
|
| 27 |
+
dtype=dtype,
|
| 28 |
+
device=device,
|
| 29 |
+
operations=operations
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def forward(
|
| 33 |
+
self,
|
| 34 |
+
x: torch.Tensor,
|
| 35 |
+
timesteps: torch.Tensor,
|
| 36 |
+
y: Optional[torch.Tensor] = None,
|
| 37 |
+
context: Optional[torch.Tensor] = None,
|
| 38 |
+
hint = None,
|
| 39 |
+
) -> torch.Tensor:
|
| 40 |
+
|
| 41 |
+
#weird sd3 controlnet specific stuff
|
| 42 |
+
y = torch.zeros_like(y)
|
| 43 |
+
|
| 44 |
+
if self.context_processor is not None:
|
| 45 |
+
context = self.context_processor(context)
|
| 46 |
+
|
| 47 |
+
hw = x.shape[-2:]
|
| 48 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
| 49 |
+
x += self.pos_embed_input(hint)
|
| 50 |
+
|
| 51 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 52 |
+
if y is not None and self.y_embedder is not None:
|
| 53 |
+
y = self.y_embedder(y)
|
| 54 |
+
c = c + y
|
| 55 |
+
|
| 56 |
+
if context is not None:
|
| 57 |
+
context = self.context_embedder(context)
|
| 58 |
+
|
| 59 |
+
output = []
|
| 60 |
+
|
| 61 |
+
blocks = len(self.joint_blocks)
|
| 62 |
+
for i in range(blocks):
|
| 63 |
+
context, x = self.joint_blocks[i](
|
| 64 |
+
context,
|
| 65 |
+
x,
|
| 66 |
+
c=c,
|
| 67 |
+
use_checkpoint=self.use_checkpoint,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
out = self.controlnet_blocks[i](x)
|
| 71 |
+
count = self.depth // blocks
|
| 72 |
+
if i == blocks - 1:
|
| 73 |
+
count -= 1
|
| 74 |
+
for j in range(count):
|
| 75 |
+
output.append(out)
|
| 76 |
+
|
| 77 |
+
return {"output": output}
|
totoro/cli_args.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import enum
|
| 3 |
+
import os
|
| 4 |
+
from typing import Optional
|
| 5 |
+
import totoro.options
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class EnumAction(argparse.Action):
|
| 9 |
+
"""
|
| 10 |
+
Argparse action for handling Enums
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, **kwargs):
|
| 13 |
+
# Pop off the type value
|
| 14 |
+
enum_type = kwargs.pop("type", None)
|
| 15 |
+
|
| 16 |
+
# Ensure an Enum subclass is provided
|
| 17 |
+
if enum_type is None:
|
| 18 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
| 19 |
+
if not issubclass(enum_type, enum.Enum):
|
| 20 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
| 21 |
+
|
| 22 |
+
# Generate choices from the Enum
|
| 23 |
+
choices = tuple(e.value for e in enum_type)
|
| 24 |
+
kwargs.setdefault("choices", choices)
|
| 25 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
| 26 |
+
|
| 27 |
+
super(EnumAction, self).__init__(**kwargs)
|
| 28 |
+
|
| 29 |
+
self._enum = enum_type
|
| 30 |
+
|
| 31 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
| 32 |
+
# Convert value back into an Enum
|
| 33 |
+
value = self._enum(values)
|
| 34 |
+
setattr(namespace, self.dest, value)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
parser = argparse.ArgumentParser()
|
| 38 |
+
|
| 39 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
| 40 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
| 41 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
| 42 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
| 43 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
| 44 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
| 45 |
+
|
| 46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
| 47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the totoroUI output directory.")
|
| 48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the totoroUI temp directory (default is in the totoroUI directory).")
|
| 49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the totoroUI input directory.")
|
| 50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch totoroUI in the default browser.")
|
| 51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
| 52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
| 53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
| 54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
| 55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
| 59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
| 60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
| 61 |
+
|
| 62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
| 63 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
| 64 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
| 65 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
| 66 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
| 67 |
+
|
| 68 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
| 69 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
| 70 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
| 71 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
| 72 |
+
|
| 73 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
| 74 |
+
|
| 75 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
| 76 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
| 77 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
| 78 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
| 79 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
| 80 |
+
|
| 81 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
| 82 |
+
|
| 83 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
| 84 |
+
|
| 85 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
| 86 |
+
|
| 87 |
+
class LatentPreviewMethod(enum.Enum):
|
| 88 |
+
NoPreviews = "none"
|
| 89 |
+
Auto = "auto"
|
| 90 |
+
Latent2RGB = "latent2rgb"
|
| 91 |
+
TAESD = "taesd"
|
| 92 |
+
|
| 93 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
| 94 |
+
|
| 95 |
+
attn_group = parser.add_mutually_exclusive_group()
|
| 96 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
| 97 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
| 98 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
| 99 |
+
|
| 100 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
| 101 |
+
|
| 102 |
+
upcast = parser.add_mutually_exclusive_group()
|
| 103 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
| 104 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
vram_group = parser.add_mutually_exclusive_group()
|
| 108 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
| 109 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
| 110 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
| 111 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
| 112 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
| 113 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
| 114 |
+
|
| 115 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
| 116 |
+
|
| 117 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force totoroUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
| 118 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
| 119 |
+
|
| 120 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
| 121 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
| 122 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
| 123 |
+
|
| 124 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
| 125 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
| 126 |
+
|
| 127 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
| 128 |
+
|
| 129 |
+
parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.")
|
| 130 |
+
|
| 131 |
+
# The default built-in provider hosted under web/
|
| 132 |
+
DEFAULT_VERSION_STRING = "totoroanonymous/totoroUI@latest"
|
| 133 |
+
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--front-end-version",
|
| 136 |
+
type=str,
|
| 137 |
+
default=DEFAULT_VERSION_STRING,
|
| 138 |
+
help="""
|
| 139 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
| 140 |
+
download available frontend implementations from GitHub releases.
|
| 141 |
+
|
| 142 |
+
The version string should be in the format of:
|
| 143 |
+
[repoOwner]/[repoName]@[version]
|
| 144 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
| 145 |
+
""",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
| 149 |
+
"""Validate if the given path is a directory."""
|
| 150 |
+
if path is None:
|
| 151 |
+
return None
|
| 152 |
+
|
| 153 |
+
if not os.path.isdir(path):
|
| 154 |
+
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
| 155 |
+
return path
|
| 156 |
+
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--front-end-root",
|
| 159 |
+
type=is_valid_directory,
|
| 160 |
+
default=None,
|
| 161 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
if totoro.options.args_parsing:
|
| 165 |
+
args = parser.parse_args()
|
| 166 |
+
else:
|
| 167 |
+
args = parser.parse_args([])
|
| 168 |
+
|
| 169 |
+
if args.windows_standalone_build:
|
| 170 |
+
args.auto_launch = True
|
| 171 |
+
|
| 172 |
+
if args.disable_auto_launch:
|
| 173 |
+
args.auto_launch = False
|
| 174 |
+
|
| 175 |
+
import logging
|
| 176 |
+
logging_level = logging.INFO
|
| 177 |
+
if args.verbose:
|
| 178 |
+
logging_level = logging.DEBUG
|
| 179 |
+
|
| 180 |
+
logging.basicConfig(format="%(message)s", level=logging_level)
|
totoro/clip_config_bigg.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPTextModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"dropout": 0.0,
|
| 8 |
+
"eos_token_id": 49407,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_size": 1280,
|
| 11 |
+
"initializer_factor": 1.0,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 5120,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 77,
|
| 16 |
+
"model_type": "clip_text_model",
|
| 17 |
+
"num_attention_heads": 20,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"projection_dim": 1280,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"vocab_size": 49408
|
| 23 |
+
}
|