Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +15 -0
- .github/workflows/publish.yaml +29 -0
- LICENSE +201 -0
- README.md +244 -0
- apps/gradio/DiffSynth_Studio.py +252 -0
- apps/gradio/entity_level_control.py +390 -0
- apps/streamlit/DiffSynth_Studio.py +15 -0
- apps/streamlit/pages/1_Image_Creator.py +362 -0
- apps/streamlit/pages/2_Video_Creator.py +197 -0
- diffsynth.egg-info/PKG-INFO +23 -0
- diffsynth.egg-info/SOURCES.txt +215 -0
- diffsynth.egg-info/dependency_links.txt +1 -0
- diffsynth.egg-info/requires.txt +13 -0
- diffsynth.egg-info/top_level.txt +1 -0
- diffsynth/__init__.py +6 -0
- diffsynth/__pycache__/__init__.cpython-311.pyc +0 -0
- diffsynth/configs/__init__.py +0 -0
- diffsynth/configs/__pycache__/__init__.cpython-311.pyc +0 -0
- diffsynth/configs/__pycache__/model_config.cpython-311.pyc +0 -0
- diffsynth/configs/model_config.py +756 -0
- diffsynth/controlnets/__init__.py +2 -0
- diffsynth/controlnets/__pycache__/__init__.cpython-311.pyc +0 -0
- diffsynth/controlnets/__pycache__/controlnet_unit.cpython-311.pyc +0 -0
- diffsynth/controlnets/__pycache__/processors.cpython-311.pyc +0 -0
- diffsynth/controlnets/controlnet_unit.py +91 -0
- diffsynth/controlnets/processors.py +62 -0
- diffsynth/data/__init__.py +1 -0
- diffsynth/data/__pycache__/__init__.cpython-311.pyc +0 -0
- diffsynth/data/__pycache__/video.cpython-311.pyc +0 -0
- diffsynth/data/simple_text_image.py +41 -0
- diffsynth/data/video.py +148 -0
- diffsynth/extensions/ESRGAN/__init__.py +137 -0
- diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-311.pyc +0 -0
- diffsynth/extensions/FastBlend/__init__.py +63 -0
- diffsynth/extensions/FastBlend/api.py +397 -0
- diffsynth/extensions/FastBlend/cupy_kernels.py +119 -0
- diffsynth/extensions/FastBlend/data.py +146 -0
- diffsynth/extensions/FastBlend/patch_match.py +298 -0
- diffsynth/extensions/FastBlend/runners/__init__.py +4 -0
- diffsynth/extensions/FastBlend/runners/accurate.py +35 -0
- diffsynth/extensions/FastBlend/runners/balanced.py +46 -0
- diffsynth/extensions/FastBlend/runners/fast.py +141 -0
- diffsynth/extensions/FastBlend/runners/interpolation.py +121 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py +1 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/blip.py +77 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py +44 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/med.py +947 -0
- diffsynth/extensions/ImageQualityMetric/BLIP/vit.py +301 -0
- diffsynth/extensions/ImageQualityMetric/__init__.py +148 -0
- diffsynth/extensions/ImageQualityMetric/aesthetic.py +148 -0
.gitattributes
CHANGED
@@ -34,3 +34,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
diffsynth/models/__pycache__/sd3_text_encoder.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
38 |
+
diffsynth/models/__pycache__/sd_unet.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
39 |
+
diffsynth/models/__pycache__/sdxl_unet.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
40 |
+
diffsynth/models/__pycache__/svd_unet.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
41 |
+
diffsynth/tokenizer_configs/kolors/tokenizer/vocab.txt filter=lfs diff=lfs merge=lfs -text
|
42 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/comp_effic.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/data_for_diff_stage.jpg filter=lfs diff=lfs merge=lfs -text
|
44 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/i2v_res.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/t2v_res.jpg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/vben_1.3b_vs_sota.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/vben_vs_sota.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/video_dit_arch.jpg filter=lfs diff=lfs merge=lfs -text
|
49 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/assets/video_vae_res.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/examples/i2v_input.JPG filter=lfs diff=lfs merge=lfs -text
|
51 |
+
models/Wan-AI/Wan2.1-T2V-1.3B/google/umt5-xxl/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/publish.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: release
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
tags:
|
6 |
+
- 'v**'
|
7 |
+
|
8 |
+
concurrency:
|
9 |
+
group: ${{ github.workflow }}-${{ github.ref }}-publish
|
10 |
+
cancel-in-progress: true
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
build-n-publish:
|
14 |
+
runs-on: ubuntu-20.04
|
15 |
+
#if: startsWith(github.event.ref, 'refs/tags')
|
16 |
+
steps:
|
17 |
+
- uses: actions/checkout@v2
|
18 |
+
- name: Set up Python 3.10
|
19 |
+
uses: actions/setup-python@v2
|
20 |
+
with:
|
21 |
+
python-version: '3.10'
|
22 |
+
- name: Install wheel
|
23 |
+
run: pip install wheel && pip install -r requirements.txt
|
24 |
+
- name: Build DiffSynth
|
25 |
+
run: python setup.py sdist bdist_wheel
|
26 |
+
- name: Publish package to PyPI
|
27 |
+
run: |
|
28 |
+
pip install twine
|
29 |
+
twine upload dist/* --skip-existing -u __token__ -p ${{ secrets.PYPI_API_TOKEN }}
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [2023] [Zhongjie Duan]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DiffSynth Studio
|
2 |
+
[](https://pypi.org/project/DiffSynth/)
|
3 |
+
[](https://github.com/modelscope/DiffSynth-Studio/blob/master/LICENSE)
|
4 |
+
[](https://github.com/modelscope/DiffSynth-Studio/issues)
|
5 |
+
[](https://GitHub.com/modelscope/DiffSynth-Studio/pull/)
|
6 |
+
[](https://GitHub.com/modelscope/DiffSynth-Studio/commit/)
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
<a href="https://trendshift.io/repositories/10946" target="_blank"><img src="https://trendshift.io/api/badge/repositories/10946" alt="modelscope%2FDiffSynth-Studio | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
|
10 |
+
</p>
|
11 |
+
|
12 |
+
Document: https://diffsynth-studio.readthedocs.io/zh-cn/latest/index.html
|
13 |
+
|
14 |
+
## Introduction
|
15 |
+
|
16 |
+
DiffSynth Studio is a Diffusion engine. We have restructured architectures including Text Encoder, UNet, VAE, among others, maintaining compatibility with models from the open-source community while enhancing computational performance. We provide many interesting features. Enjoy the magic of Diffusion models!
|
17 |
+
|
18 |
+
Until now, DiffSynth Studio has supported the following models:
|
19 |
+
|
20 |
+
* [Wan-Video](https://github.com/Wan-Video/Wan2.1)
|
21 |
+
* [StepVideo](https://github.com/stepfun-ai/Step-Video-T2V)
|
22 |
+
* [HunyuanVideo](https://github.com/Tencent/HunyuanVideo)
|
23 |
+
* [CogVideoX](https://huggingface.co/THUDM/CogVideoX-5b)
|
24 |
+
* [FLUX](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
25 |
+
* [ExVideo](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1)
|
26 |
+
* [Kolors](https://huggingface.co/Kwai-Kolors/Kolors)
|
27 |
+
* [Stable Diffusion 3](https://huggingface.co/stabilityai/stable-diffusion-3-medium)
|
28 |
+
* [Stable Video Diffusion](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt)
|
29 |
+
* [Hunyuan-DiT](https://github.com/Tencent/HunyuanDiT)
|
30 |
+
* [RIFE](https://github.com/hzwer/ECCV2022-RIFE)
|
31 |
+
* [ESRGAN](https://github.com/xinntao/ESRGAN)
|
32 |
+
* [Ip-Adapter](https://github.com/tencent-ailab/IP-Adapter)
|
33 |
+
* [AnimateDiff](https://github.com/guoyww/animatediff/)
|
34 |
+
* [ControlNet](https://github.com/lllyasviel/ControlNet)
|
35 |
+
* [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
36 |
+
* [Stable Diffusion](https://huggingface.co/runwayml/stable-diffusion-v1-5)
|
37 |
+
|
38 |
+
## News
|
39 |
+
|
40 |
+
- **February 25, 2025** We support Wan-Video, a collection of SOTA video synthesis models open-sourced by Alibaba. See [./examples/wanvideo/](./examples/wanvideo/).
|
41 |
+
|
42 |
+
- **February 17, 2025** We support [StepVideo](https://modelscope.cn/models/stepfun-ai/stepvideo-t2v/summary)! State-of-the-art video synthesis model! See [./examples/stepvideo](./examples/stepvideo/).
|
43 |
+
|
44 |
+
- **December 31, 2024** We propose EliGen, a novel framework for precise entity-level controlled text-to-image generation, complemented by an inpainting fusion pipeline to extend its capabilities to image inpainting tasks. EliGen seamlessly integrates with existing community models, such as IP-Adapter and In-Context LoRA, enhancing its versatility. For more details, see [./examples/EntityControl](./examples/EntityControl/).
|
45 |
+
- Paper: [EliGen: Entity-Level Controlled Image Generation with Regional Attention](https://arxiv.org/abs/2501.01097)
|
46 |
+
- Model: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Eligen), [HuggingFace](https://huggingface.co/modelscope/EliGen)
|
47 |
+
- Online Demo: [ModelScope EliGen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/EliGen)
|
48 |
+
- Training Dataset: [EliGen Train Set](https://www.modelscope.cn/datasets/DiffSynth-Studio/EliGenTrainSet)
|
49 |
+
|
50 |
+
- **December 19, 2024** We implement advanced VRAM management for HunyuanVideo, making it possible to generate videos at a resolution of 129x720x1280 using 24GB of VRAM, or at 129x512x384 resolution with just 6GB of VRAM. Please refer to [./examples/HunyuanVideo/](./examples/HunyuanVideo/) for more details.
|
51 |
+
|
52 |
+
- **December 18, 2024** We propose ArtAug, an approach designed to improve text-to-image synthesis models through synthesis-understanding interactions. We have trained an ArtAug enhancement module for FLUX.1-dev in the format of LoRA. This model integrates the aesthetic understanding of Qwen2-VL-72B into FLUX.1-dev, leading to an improvement in the quality of generated images.
|
53 |
+
- Paper: https://arxiv.org/abs/2412.12888
|
54 |
+
- Examples: https://github.com/modelscope/DiffSynth-Studio/tree/main/examples/ArtAug
|
55 |
+
- Model: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1), [HuggingFace](https://huggingface.co/ECNU-CILab/ArtAug-lora-FLUX.1dev-v1)
|
56 |
+
- Demo: [ModelScope](https://modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=7228&modelType=LoRA&sdVersion=FLUX_1&modelUrl=modelscope%3A%2F%2FDiffSynth-Studio%2FArtAug-lora-FLUX.1dev-v1%3Frevision%3Dv1.0), HuggingFace (Coming soon)
|
57 |
+
|
58 |
+
- **October 25, 2024** We provide extensive FLUX ControlNet support. This project supports many different ControlNet models that can be freely combined, even if their structures differ. Additionally, ControlNet models are compatible with high-resolution refinement and partition control techniques, enabling very powerful controllable image generation. See [`./examples/ControlNet/`](./examples/ControlNet/).
|
59 |
+
|
60 |
+
- **October 8, 2024.** We release the extended LoRA based on CogVideoX-5B and ExVideo. You can download this model from [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1) or [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1).
|
61 |
+
|
62 |
+
- **August 22, 2024.** CogVideoX-5B is supported in this project. See [here](/examples/video_synthesis/). We provide several interesting features for this text-to-video model, including
|
63 |
+
- Text to video
|
64 |
+
- Video editing
|
65 |
+
- Self-upscaling
|
66 |
+
- Video interpolation
|
67 |
+
|
68 |
+
- **August 22, 2024.** We have implemented an interesting painter that supports all text-to-image models. Now you can create stunning images using the painter, with assistance from AI!
|
69 |
+
- Use it in our [WebUI](#usage-in-webui).
|
70 |
+
|
71 |
+
- **August 21, 2024.** FLUX is supported in DiffSynth-Studio.
|
72 |
+
- Enable CFG and highres-fix to improve visual quality. See [here](/examples/image_synthesis/README.md)
|
73 |
+
- LoRA, ControlNet, and additional models will be available soon.
|
74 |
+
|
75 |
+
- **June 21, 2024.** 🔥🔥🔥 We propose ExVideo, a post-tuning technique aimed at enhancing the capability of video generation models. We have extended Stable Video Diffusion to achieve the generation of long videos up to 128 frames.
|
76 |
+
- [Project Page](https://ecnu-cilab.github.io/ExVideoProjectPage/)
|
77 |
+
- Source code is released in this repo. See [`examples/ExVideo`](./examples/ExVideo/).
|
78 |
+
- Models are released on [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1) and [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-SVD-128f-v1).
|
79 |
+
- Technical report is released on [arXiv](https://arxiv.org/abs/2406.14130).
|
80 |
+
- You can try ExVideo in this [Demo](https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1)!
|
81 |
+
|
82 |
+
- **June 13, 2024.** DiffSynth Studio is transferred to ModelScope. The developers have transitioned from "I" to "we". Of course, I will still participate in development and maintenance.
|
83 |
+
|
84 |
+
- **Jan 29, 2024.** We propose Diffutoon, a fantastic solution for toon shading.
|
85 |
+
- [Project Page](https://ecnu-cilab.github.io/DiffutoonProjectPage/)
|
86 |
+
- The source codes are released in this project.
|
87 |
+
- The technical report (IJCAI 2024) is released on [arXiv](https://arxiv.org/abs/2401.16224).
|
88 |
+
|
89 |
+
- **Dec 8, 2023.** We decide to develop a new Project, aiming to release the potential of diffusion models, especially in video synthesis. The development of this project is started.
|
90 |
+
|
91 |
+
- **Nov 15, 2023.** We propose FastBlend, a powerful video deflickering algorithm.
|
92 |
+
- The sd-webui extension is released on [GitHub](https://github.com/Artiprocher/sd-webui-fastblend).
|
93 |
+
- Demo videos are shown on Bilibili, including three tasks.
|
94 |
+
- [Video deflickering](https://www.bilibili.com/video/BV1d94y1W7PE)
|
95 |
+
- [Video interpolation](https://www.bilibili.com/video/BV1Lw411m71p)
|
96 |
+
- [Image-driven video rendering](https://www.bilibili.com/video/BV1RB4y1Z7LF)
|
97 |
+
- The technical report is released on [arXiv](https://arxiv.org/abs/2311.09265).
|
98 |
+
- An unofficial ComfyUI extension developed by other users is released on [GitHub](https://github.com/AInseven/ComfyUI-fastblend).
|
99 |
+
|
100 |
+
- **Oct 1, 2023.** We release an early version of this project, namely FastSDXL. A try for building a diffusion engine.
|
101 |
+
- The source codes are released on [GitHub](https://github.com/Artiprocher/FastSDXL).
|
102 |
+
- FastSDXL includes a trainable OLSS scheduler for efficiency improvement.
|
103 |
+
- The original repo of OLSS is [here](https://github.com/alibaba/EasyNLP/tree/master/diffusion/olss_scheduler).
|
104 |
+
- The technical report (CIKM 2023) is released on [arXiv](https://arxiv.org/abs/2305.14677).
|
105 |
+
- A demo video is shown on [Bilibili](https://www.bilibili.com/video/BV1w8411y7uj).
|
106 |
+
- Since OLSS requires additional training, we don't implement it in this project.
|
107 |
+
|
108 |
+
- **Aug 29, 2023.** We propose DiffSynth, a video synthesis framework.
|
109 |
+
- [Project Page](https://ecnu-cilab.github.io/DiffSynth.github.io/).
|
110 |
+
- The source codes are released in [EasyNLP](https://github.com/alibaba/EasyNLP/tree/master/diffusion/DiffSynth).
|
111 |
+
- The technical report (ECML PKDD 2024) is released on [arXiv](https://arxiv.org/abs/2308.03463).
|
112 |
+
|
113 |
+
|
114 |
+
## Installation
|
115 |
+
|
116 |
+
Install from source code (recommended):
|
117 |
+
|
118 |
+
```
|
119 |
+
git clone https://github.com/modelscope/DiffSynth-Studio.git
|
120 |
+
cd DiffSynth-Studio
|
121 |
+
pip install -e .
|
122 |
+
```
|
123 |
+
|
124 |
+
Or install from pypi (There is a delay in the update. If you want to experience the latest features, please do not use this installation method.):
|
125 |
+
|
126 |
+
```
|
127 |
+
pip install diffsynth
|
128 |
+
```
|
129 |
+
|
130 |
+
If you encounter issues during installation, it may be caused by the packages we depend on. Please refer to the documentation of the package that caused the problem.
|
131 |
+
|
132 |
+
* [torch](https://pytorch.org/get-started/locally/)
|
133 |
+
* [sentencepiece](https://github.com/google/sentencepiece)
|
134 |
+
* [cmake](https://cmake.org)
|
135 |
+
* [cupy](https://docs.cupy.dev/en/stable/install.html)
|
136 |
+
|
137 |
+
## Usage (in Python code)
|
138 |
+
|
139 |
+
The Python examples are in [`examples`](./examples/). We provide an overview here.
|
140 |
+
|
141 |
+
### Download Models
|
142 |
+
|
143 |
+
Download the pre-set models. Model IDs can be found in [config file](/diffsynth/configs/model_config.py).
|
144 |
+
|
145 |
+
```python
|
146 |
+
from diffsynth import download_models
|
147 |
+
|
148 |
+
download_models(["FLUX.1-dev", "Kolors"])
|
149 |
+
```
|
150 |
+
|
151 |
+
Download your own models.
|
152 |
+
|
153 |
+
```python
|
154 |
+
from diffsynth.models.downloader import download_from_huggingface, download_from_modelscope
|
155 |
+
|
156 |
+
# From Modelscope (recommended)
|
157 |
+
download_from_modelscope("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.fp16.bin", "models/kolors/Kolors/vae")
|
158 |
+
# From Huggingface
|
159 |
+
download_from_huggingface("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.fp16.safetensors", "models/kolors/Kolors/vae")
|
160 |
+
```
|
161 |
+
|
162 |
+
### Video Synthesis
|
163 |
+
|
164 |
+
#### Text-to-video using CogVideoX-5B
|
165 |
+
|
166 |
+
CogVideoX-5B is released by ZhiPu. We provide an improved pipeline, supporting text-to-video, video editing, self-upscaling and video interpolation. [`examples/video_synthesis`](./examples/video_synthesis/)
|
167 |
+
|
168 |
+
The video on the left is generated using the original text-to-video pipeline, while the video on the right is the result after editing and frame interpolation.
|
169 |
+
|
170 |
+
https://github.com/user-attachments/assets/26b044c1-4a60-44a4-842f-627ff289d006
|
171 |
+
|
172 |
+
#### Long Video Synthesis
|
173 |
+
|
174 |
+
We trained extended video synthesis models, which can generate 128 frames. [`examples/ExVideo`](./examples/ExVideo/)
|
175 |
+
|
176 |
+
https://github.com/modelscope/DiffSynth-Studio/assets/35051019/d97f6aa9-8064-4b5b-9d49-ed6001bb9acc
|
177 |
+
|
178 |
+
https://github.com/user-attachments/assets/321ee04b-8c17-479e-8a95-8cbcf21f8d7e
|
179 |
+
|
180 |
+
#### Toon Shading
|
181 |
+
|
182 |
+
Render realistic videos in a flatten style and enable video editing features. [`examples/Diffutoon`](./examples/Diffutoon/)
|
183 |
+
|
184 |
+
https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/b54c05c5-d747-4709-be5e-b39af82404dd
|
185 |
+
|
186 |
+
https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/20528af5-5100-474a-8cdc-440b9efdd86c
|
187 |
+
|
188 |
+
#### Video Stylization
|
189 |
+
|
190 |
+
Video stylization without video models. [`examples/diffsynth`](./examples/diffsynth/)
|
191 |
+
|
192 |
+
https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/59fb2f7b-8de0-4481-b79f-0c3a7361a1ea
|
193 |
+
|
194 |
+
### Image Synthesis
|
195 |
+
|
196 |
+
Generate high-resolution images, by breaking the limitation of diffusion models! [`examples/image_synthesis`](./examples/image_synthesis/).
|
197 |
+
|
198 |
+
LoRA fine-tuning is supported in [`examples/train`](./examples/train/).
|
199 |
+
|
200 |
+
|FLUX|Stable Diffusion 3|
|
201 |
+
|-|-|
|
202 |
+
|||
|
203 |
+
|
204 |
+
|Kolors|Hunyuan-DiT|
|
205 |
+
|-|-|
|
206 |
+
|||
|
207 |
+
|
208 |
+
|Stable Diffusion|Stable Diffusion XL|
|
209 |
+
|-|-|
|
210 |
+
|||
|
211 |
+
|
212 |
+
## Usage (in WebUI)
|
213 |
+
|
214 |
+
Create stunning images using the painter, with assistance from AI!
|
215 |
+
|
216 |
+
https://github.com/user-attachments/assets/95265d21-cdd6-4125-a7cb-9fbcf6ceb7b0
|
217 |
+
|
218 |
+
**This video is not rendered in real-time.**
|
219 |
+
|
220 |
+
Before launching the WebUI, please download models to the folder `./models`. See [here](#download-models).
|
221 |
+
|
222 |
+
* `Gradio` version
|
223 |
+
|
224 |
+
```
|
225 |
+
pip install gradio
|
226 |
+
```
|
227 |
+
|
228 |
+
```
|
229 |
+
python apps/gradio/DiffSynth_Studio.py
|
230 |
+
```
|
231 |
+
|
232 |
+

|
233 |
+
|
234 |
+
* `Streamlit` version
|
235 |
+
|
236 |
+
```
|
237 |
+
pip install streamlit streamlit-drawable-canvas
|
238 |
+
```
|
239 |
+
|
240 |
+
```
|
241 |
+
python -m streamlit run apps/streamlit/DiffSynth_Studio.py
|
242 |
+
```
|
243 |
+
|
244 |
+
https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/93085557-73f3-4eee-a205-9829591ef954
|
apps/gradio/DiffSynth_Studio.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffsynth import ModelManager, SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline
|
3 |
+
import os, torch
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
config = {
|
9 |
+
"model_config": {
|
10 |
+
"Stable Diffusion": {
|
11 |
+
"model_folder": "models/stable_diffusion",
|
12 |
+
"pipeline_class": SDImagePipeline,
|
13 |
+
"default_parameters": {
|
14 |
+
"cfg_scale": 7.0,
|
15 |
+
"height": 512,
|
16 |
+
"width": 512,
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"Stable Diffusion XL": {
|
20 |
+
"model_folder": "models/stable_diffusion_xl",
|
21 |
+
"pipeline_class": SDXLImagePipeline,
|
22 |
+
"default_parameters": {
|
23 |
+
"cfg_scale": 7.0,
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"Stable Diffusion 3": {
|
27 |
+
"model_folder": "models/stable_diffusion_3",
|
28 |
+
"pipeline_class": SD3ImagePipeline,
|
29 |
+
"default_parameters": {
|
30 |
+
"cfg_scale": 7.0,
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"Stable Diffusion XL Turbo": {
|
34 |
+
"model_folder": "models/stable_diffusion_xl_turbo",
|
35 |
+
"pipeline_class": SDXLImagePipeline,
|
36 |
+
"default_parameters": {
|
37 |
+
"negative_prompt": "",
|
38 |
+
"cfg_scale": 1.0,
|
39 |
+
"num_inference_steps": 1,
|
40 |
+
"height": 512,
|
41 |
+
"width": 512,
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"Kolors": {
|
45 |
+
"model_folder": "models/kolors",
|
46 |
+
"pipeline_class": SDXLImagePipeline,
|
47 |
+
"default_parameters": {
|
48 |
+
"cfg_scale": 7.0,
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"HunyuanDiT": {
|
52 |
+
"model_folder": "models/HunyuanDiT",
|
53 |
+
"pipeline_class": HunyuanDiTImagePipeline,
|
54 |
+
"default_parameters": {
|
55 |
+
"cfg_scale": 7.0,
|
56 |
+
}
|
57 |
+
},
|
58 |
+
"FLUX": {
|
59 |
+
"model_folder": "models/FLUX",
|
60 |
+
"pipeline_class": FluxImagePipeline,
|
61 |
+
"default_parameters": {
|
62 |
+
"cfg_scale": 1.0,
|
63 |
+
}
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"max_num_painter_layers": 8,
|
67 |
+
"max_num_model_cache": 1,
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def load_model_list(model_type):
|
72 |
+
if model_type is None:
|
73 |
+
return []
|
74 |
+
folder = config["model_config"][model_type]["model_folder"]
|
75 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
|
76 |
+
if model_type in ["HunyuanDiT", "Kolors", "FLUX"]:
|
77 |
+
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
|
78 |
+
file_list = sorted(file_list)
|
79 |
+
return file_list
|
80 |
+
|
81 |
+
|
82 |
+
def load_model(model_type, model_path):
|
83 |
+
global model_dict
|
84 |
+
model_key = f"{model_type}:{model_path}"
|
85 |
+
if model_key in model_dict:
|
86 |
+
return model_dict[model_key]
|
87 |
+
model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path)
|
88 |
+
model_manager = ModelManager()
|
89 |
+
if model_type == "HunyuanDiT":
|
90 |
+
model_manager.load_models([
|
91 |
+
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
|
92 |
+
os.path.join(model_path, "mt5/pytorch_model.bin"),
|
93 |
+
os.path.join(model_path, "model/pytorch_model_ema.pt"),
|
94 |
+
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
|
95 |
+
])
|
96 |
+
elif model_type == "Kolors":
|
97 |
+
model_manager.load_models([
|
98 |
+
os.path.join(model_path, "text_encoder"),
|
99 |
+
os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"),
|
100 |
+
os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"),
|
101 |
+
])
|
102 |
+
elif model_type == "FLUX":
|
103 |
+
model_manager.torch_dtype = torch.bfloat16
|
104 |
+
file_list = [
|
105 |
+
os.path.join(model_path, "text_encoder/model.safetensors"),
|
106 |
+
os.path.join(model_path, "text_encoder_2"),
|
107 |
+
]
|
108 |
+
for file_name in os.listdir(model_path):
|
109 |
+
if file_name.endswith(".safetensors"):
|
110 |
+
file_list.append(os.path.join(model_path, file_name))
|
111 |
+
model_manager.load_models(file_list)
|
112 |
+
else:
|
113 |
+
model_manager.load_model(model_path)
|
114 |
+
pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager)
|
115 |
+
while len(model_dict) + 1 > config["max_num_model_cache"]:
|
116 |
+
key = next(iter(model_dict.keys()))
|
117 |
+
model_manager_to_release, _ = model_dict[key]
|
118 |
+
model_manager_to_release.to("cpu")
|
119 |
+
del model_dict[key]
|
120 |
+
torch.cuda.empty_cache()
|
121 |
+
model_dict[model_key] = model_manager, pipe
|
122 |
+
return model_manager, pipe
|
123 |
+
|
124 |
+
|
125 |
+
model_dict = {}
|
126 |
+
|
127 |
+
with gr.Blocks() as app:
|
128 |
+
gr.Markdown("# DiffSynth-Studio Painter")
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column(scale=382, min_width=100):
|
131 |
+
|
132 |
+
with gr.Accordion(label="Model"):
|
133 |
+
model_type = gr.Dropdown(choices=[i for i in config["model_config"]], label="Model type")
|
134 |
+
model_path = gr.Dropdown(choices=[], interactive=True, label="Model path")
|
135 |
+
|
136 |
+
@gr.on(inputs=model_type, outputs=model_path, triggers=model_type.change)
|
137 |
+
def model_type_to_model_path(model_type):
|
138 |
+
return gr.Dropdown(choices=load_model_list(model_type))
|
139 |
+
|
140 |
+
with gr.Accordion(label="Prompt"):
|
141 |
+
prompt = gr.Textbox(label="Prompt", lines=3)
|
142 |
+
negative_prompt = gr.Textbox(label="Negative prompt", lines=1)
|
143 |
+
cfg_scale = gr.Slider(minimum=1.0, maximum=10.0, value=7.0, step=0.1, interactive=True, label="Classifier-free guidance scale")
|
144 |
+
embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.1, interactive=True, label="Embedded guidance scale (only for FLUX)")
|
145 |
+
|
146 |
+
with gr.Accordion(label="Image"):
|
147 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, interactive=True, label="Inference steps")
|
148 |
+
height = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Height")
|
149 |
+
width = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Width")
|
150 |
+
with gr.Column():
|
151 |
+
use_fixed_seed = gr.Checkbox(value=True, interactive=False, label="Use fixed seed")
|
152 |
+
seed = gr.Number(minimum=0, maximum=10**9, value=0, interactive=True, label="Random seed", show_label=False)
|
153 |
+
|
154 |
+
@gr.on(
|
155 |
+
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
|
156 |
+
outputs=[prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
|
157 |
+
triggers=model_path.change
|
158 |
+
)
|
159 |
+
def model_path_to_default_params(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width):
|
160 |
+
load_model(model_type, model_path)
|
161 |
+
cfg_scale = config["model_config"][model_type]["default_parameters"].get("cfg_scale", cfg_scale)
|
162 |
+
embedded_guidance = config["model_config"][model_type]["default_parameters"].get("embedded_guidance", embedded_guidance)
|
163 |
+
num_inference_steps = config["model_config"][model_type]["default_parameters"].get("num_inference_steps", num_inference_steps)
|
164 |
+
height = config["model_config"][model_type]["default_parameters"].get("height", height)
|
165 |
+
width = config["model_config"][model_type]["default_parameters"].get("width", width)
|
166 |
+
return prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width
|
167 |
+
|
168 |
+
|
169 |
+
with gr.Column(scale=618, min_width=100):
|
170 |
+
with gr.Accordion(label="Painter"):
|
171 |
+
enable_local_prompt_list = []
|
172 |
+
local_prompt_list = []
|
173 |
+
mask_scale_list = []
|
174 |
+
canvas_list = []
|
175 |
+
for painter_layer_id in range(config["max_num_painter_layers"]):
|
176 |
+
with gr.Tab(label=f"Layer {painter_layer_id}"):
|
177 |
+
enable_local_prompt = gr.Checkbox(label="Enable", value=False, key=f"enable_local_prompt_{painter_layer_id}")
|
178 |
+
local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}")
|
179 |
+
mask_scale = gr.Slider(minimum=0.0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Mask scale", key=f"mask_scale_{painter_layer_id}")
|
180 |
+
canvas = gr.ImageEditor(canvas_size=(512, 1), sources=None, layers=False, interactive=True, image_mode="RGBA",
|
181 |
+
brush=gr.Brush(default_size=100, default_color="#000000", colors=["#000000"]),
|
182 |
+
label="Painter", key=f"canvas_{painter_layer_id}")
|
183 |
+
@gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear, enable_local_prompt.change], show_progress="hidden")
|
184 |
+
def resize_canvas(height, width, canvas):
|
185 |
+
h, w = canvas["background"].shape[:2]
|
186 |
+
if h != height or width != w:
|
187 |
+
return np.ones((height, width, 3), dtype=np.uint8) * 255
|
188 |
+
else:
|
189 |
+
return canvas
|
190 |
+
|
191 |
+
enable_local_prompt_list.append(enable_local_prompt)
|
192 |
+
local_prompt_list.append(local_prompt)
|
193 |
+
mask_scale_list.append(mask_scale)
|
194 |
+
canvas_list.append(canvas)
|
195 |
+
with gr.Accordion(label="Results"):
|
196 |
+
run_button = gr.Button(value="Generate", variant="primary")
|
197 |
+
output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil")
|
198 |
+
with gr.Row():
|
199 |
+
with gr.Column():
|
200 |
+
output_to_painter_button = gr.Button(value="Set as painter's background")
|
201 |
+
with gr.Column():
|
202 |
+
output_to_input_button = gr.Button(value="Set as input image")
|
203 |
+
painter_background = gr.State(None)
|
204 |
+
input_background = gr.State(None)
|
205 |
+
@gr.on(
|
206 |
+
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed] + enable_local_prompt_list + local_prompt_list + mask_scale_list + canvas_list,
|
207 |
+
outputs=[output_image],
|
208 |
+
triggers=run_button.click
|
209 |
+
)
|
210 |
+
def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed, *args, progress=gr.Progress()):
|
211 |
+
_, pipe = load_model(model_type, model_path)
|
212 |
+
input_params = {
|
213 |
+
"prompt": prompt,
|
214 |
+
"negative_prompt": negative_prompt,
|
215 |
+
"cfg_scale": cfg_scale,
|
216 |
+
"num_inference_steps": num_inference_steps,
|
217 |
+
"height": height,
|
218 |
+
"width": width,
|
219 |
+
"progress_bar_cmd": progress.tqdm,
|
220 |
+
}
|
221 |
+
if isinstance(pipe, FluxImagePipeline):
|
222 |
+
input_params["embedded_guidance"] = embedded_guidance
|
223 |
+
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list = (
|
224 |
+
args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]],
|
225 |
+
args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]],
|
226 |
+
args[2 * config["max_num_painter_layers"]: 3 * config["max_num_painter_layers"]],
|
227 |
+
args[3 * config["max_num_painter_layers"]: 4 * config["max_num_painter_layers"]]
|
228 |
+
)
|
229 |
+
local_prompts, masks, mask_scales = [], [], []
|
230 |
+
for enable_local_prompt, local_prompt, mask_scale, canvas in zip(
|
231 |
+
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list
|
232 |
+
):
|
233 |
+
if enable_local_prompt:
|
234 |
+
local_prompts.append(local_prompt)
|
235 |
+
masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB"))
|
236 |
+
mask_scales.append(mask_scale)
|
237 |
+
input_params.update({
|
238 |
+
"local_prompts": local_prompts,
|
239 |
+
"masks": masks,
|
240 |
+
"mask_scales": mask_scales,
|
241 |
+
})
|
242 |
+
torch.manual_seed(seed)
|
243 |
+
image = pipe(**input_params)
|
244 |
+
return image
|
245 |
+
|
246 |
+
@gr.on(inputs=[output_image] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click)
|
247 |
+
def send_output_to_painter_background(output_image, *canvas_list):
|
248 |
+
for canvas in canvas_list:
|
249 |
+
h, w = canvas["background"].shape[:2]
|
250 |
+
canvas["background"] = output_image.resize((w, h))
|
251 |
+
return tuple(canvas_list)
|
252 |
+
app.launch()
|
apps/gradio/entity_level_control.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import random
|
6 |
+
import json
|
7 |
+
import gradio as gr
|
8 |
+
from diffsynth import ModelManager, FluxImagePipeline, download_customized_models
|
9 |
+
from modelscope import dataset_snapshot_download
|
10 |
+
|
11 |
+
|
12 |
+
dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/eligen/entity_control/*")
|
13 |
+
example_json = 'data/examples/eligen/entity_control/ui_examples.json'
|
14 |
+
with open(example_json, 'r') as f:
|
15 |
+
examples = json.load(f)['examples']
|
16 |
+
|
17 |
+
for idx in range(len(examples)):
|
18 |
+
example_id = examples[idx]['example_id']
|
19 |
+
entity_prompts = examples[idx]['local_prompt_list']
|
20 |
+
examples[idx]['mask_lists'] = [Image.open(f"data/examples/eligen/entity_control/example_{example_id}/{i}.png").convert('RGB') for i in range(len(entity_prompts))]
|
21 |
+
|
22 |
+
def create_canvas_data(background, masks):
|
23 |
+
if background.shape[-1] == 3:
|
24 |
+
background = np.dstack([background, np.full(background.shape[:2], 255, dtype=np.uint8)])
|
25 |
+
layers = []
|
26 |
+
for mask in masks:
|
27 |
+
if mask is not None:
|
28 |
+
mask_single_channel = mask if mask.ndim == 2 else mask[..., 0]
|
29 |
+
layer = np.zeros((mask_single_channel.shape[0], mask_single_channel.shape[1], 4), dtype=np.uint8)
|
30 |
+
layer[..., -1] = mask_single_channel
|
31 |
+
layers.append(layer)
|
32 |
+
else:
|
33 |
+
layers.append(np.zeros_like(background))
|
34 |
+
|
35 |
+
composite = background.copy()
|
36 |
+
for layer in layers:
|
37 |
+
if layer.size > 0:
|
38 |
+
composite = np.where(layer[..., -1:] > 0, layer, composite)
|
39 |
+
return {
|
40 |
+
"background": background,
|
41 |
+
"layers": layers,
|
42 |
+
"composite": composite,
|
43 |
+
}
|
44 |
+
|
45 |
+
def load_example(load_example_button):
|
46 |
+
example_idx = int(load_example_button.split()[-1]) - 1
|
47 |
+
example = examples[example_idx]
|
48 |
+
result = [
|
49 |
+
50,
|
50 |
+
example["global_prompt"],
|
51 |
+
example["negative_prompt"],
|
52 |
+
example["seed"],
|
53 |
+
*example["local_prompt_list"],
|
54 |
+
]
|
55 |
+
num_entities = len(example["local_prompt_list"])
|
56 |
+
result += [""] * (config["max_num_painter_layers"] - num_entities)
|
57 |
+
masks = []
|
58 |
+
for mask in example["mask_lists"]:
|
59 |
+
mask_single_channel = np.array(mask.convert("L"))
|
60 |
+
masks.append(mask_single_channel)
|
61 |
+
for _ in range(config["max_num_painter_layers"] - len(masks)):
|
62 |
+
blank_mask = np.zeros_like(masks[0]) if masks else np.zeros((512, 512), dtype=np.uint8)
|
63 |
+
masks.append(blank_mask)
|
64 |
+
background = np.ones((masks[0].shape[0], masks[0].shape[1], 4), dtype=np.uint8) * 255
|
65 |
+
canvas_data_list = []
|
66 |
+
for mask in masks:
|
67 |
+
canvas_data = create_canvas_data(background, [mask])
|
68 |
+
canvas_data_list.append(canvas_data)
|
69 |
+
result.extend(canvas_data_list)
|
70 |
+
return result
|
71 |
+
|
72 |
+
def save_mask_prompts(masks, mask_prompts, global_prompt, seed=0, random_dir='0000000'):
|
73 |
+
save_dir = os.path.join('workdirs/tmp_mask', random_dir)
|
74 |
+
print(f'save to {save_dir}')
|
75 |
+
os.makedirs(save_dir, exist_ok=True)
|
76 |
+
for i, mask in enumerate(masks):
|
77 |
+
save_path = os.path.join(save_dir, f'{i}.png')
|
78 |
+
mask.save(save_path)
|
79 |
+
sample = {
|
80 |
+
"global_prompt": global_prompt,
|
81 |
+
"mask_prompts": mask_prompts,
|
82 |
+
"seed": seed,
|
83 |
+
}
|
84 |
+
with open(os.path.join(save_dir, f"prompts.json"), 'w') as f:
|
85 |
+
json.dump(sample, f, indent=4)
|
86 |
+
|
87 |
+
def visualize_masks(image, masks, mask_prompts, font_size=35, use_random_colors=False):
|
88 |
+
# Create a blank image for overlays
|
89 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
90 |
+
colors = [
|
91 |
+
(165, 238, 173, 80),
|
92 |
+
(76, 102, 221, 80),
|
93 |
+
(221, 160, 77, 80),
|
94 |
+
(204, 93, 71, 80),
|
95 |
+
(145, 187, 149, 80),
|
96 |
+
(134, 141, 172, 80),
|
97 |
+
(157, 137, 109, 80),
|
98 |
+
(153, 104, 95, 80),
|
99 |
+
(165, 238, 173, 80),
|
100 |
+
(76, 102, 221, 80),
|
101 |
+
(221, 160, 77, 80),
|
102 |
+
(204, 93, 71, 80),
|
103 |
+
(145, 187, 149, 80),
|
104 |
+
(134, 141, 172, 80),
|
105 |
+
(157, 137, 109, 80),
|
106 |
+
(153, 104, 95, 80),
|
107 |
+
]
|
108 |
+
# Generate random colors for each mask
|
109 |
+
if use_random_colors:
|
110 |
+
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 80) for _ in range(len(masks))]
|
111 |
+
# Font settings
|
112 |
+
try:
|
113 |
+
font = ImageFont.truetype("arial", font_size) # Adjust as needed
|
114 |
+
except IOError:
|
115 |
+
font = ImageFont.load_default(font_size)
|
116 |
+
# Overlay each mask onto the overlay image
|
117 |
+
for mask, mask_prompt, color in zip(masks, mask_prompts, colors):
|
118 |
+
if mask is None:
|
119 |
+
continue
|
120 |
+
# Convert mask to RGBA mode
|
121 |
+
mask_rgba = mask.convert('RGBA')
|
122 |
+
mask_data = mask_rgba.getdata()
|
123 |
+
new_data = [(color if item[:3] == (255, 255, 255) else (0, 0, 0, 0)) for item in mask_data]
|
124 |
+
mask_rgba.putdata(new_data)
|
125 |
+
# Draw the mask prompt text on the mask
|
126 |
+
draw = ImageDraw.Draw(mask_rgba)
|
127 |
+
mask_bbox = mask.getbbox() # Get the bounding box of the mask
|
128 |
+
if mask_bbox is None:
|
129 |
+
continue
|
130 |
+
text_position = (mask_bbox[0] + 10, mask_bbox[1] + 10) # Adjust text position based on mask position
|
131 |
+
draw.text(text_position, mask_prompt, fill=(255, 255, 255, 255), font=font)
|
132 |
+
# Alpha composite the overlay with this mask
|
133 |
+
overlay = Image.alpha_composite(overlay, mask_rgba)
|
134 |
+
# Composite the overlay onto the original image
|
135 |
+
result = Image.alpha_composite(image.convert('RGBA'), overlay)
|
136 |
+
return result
|
137 |
+
|
138 |
+
config = {
|
139 |
+
"model_config": {
|
140 |
+
"FLUX": {
|
141 |
+
"model_folder": "models/FLUX",
|
142 |
+
"pipeline_class": FluxImagePipeline,
|
143 |
+
"default_parameters": {
|
144 |
+
"cfg_scale": 3.0,
|
145 |
+
"embedded_guidance": 3.5,
|
146 |
+
"num_inference_steps": 30,
|
147 |
+
}
|
148 |
+
},
|
149 |
+
},
|
150 |
+
"max_num_painter_layers": 8,
|
151 |
+
"max_num_model_cache": 1,
|
152 |
+
}
|
153 |
+
|
154 |
+
model_dict = {}
|
155 |
+
|
156 |
+
def load_model(model_type='FLUX', model_path='FLUX.1-dev'):
|
157 |
+
global model_dict
|
158 |
+
model_key = f"{model_type}:{model_path}"
|
159 |
+
if model_key in model_dict:
|
160 |
+
return model_dict[model_key]
|
161 |
+
model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path)
|
162 |
+
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda", model_id_list=["FLUX.1-dev"])
|
163 |
+
model_manager.load_lora(
|
164 |
+
download_customized_models(
|
165 |
+
model_id="DiffSynth-Studio/Eligen",
|
166 |
+
origin_file_path="model_bf16.safetensors",
|
167 |
+
local_dir="models/lora/entity_control",
|
168 |
+
),
|
169 |
+
lora_alpha=1,
|
170 |
+
)
|
171 |
+
pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager)
|
172 |
+
model_dict[model_key] = model_manager, pipe
|
173 |
+
return model_manager, pipe
|
174 |
+
|
175 |
+
|
176 |
+
with gr.Blocks() as app:
|
177 |
+
gr.Markdown(
|
178 |
+
"""## EliGen: Entity-Level Controllable Text-to-Image Model
|
179 |
+
1. On the left, input the **global prompt** for the overall image, such as "a person stands by the river."
|
180 |
+
2. On the right, input the **local prompt** for each entity, such as "person," and draw the corresponding mask in the **Entity Mask Painter**. Generally, solid rectangular masks yield better results.
|
181 |
+
3. Click the **Generate** button to create the image. By selecting different **random seeds**, you can generate diverse images.
|
182 |
+
4. **You can directly click the "Load Example" button on any sample at the bottom to load example inputs.**
|
183 |
+
"""
|
184 |
+
)
|
185 |
+
|
186 |
+
loading_status = gr.Textbox(label="Loading Model...", value="Loading model... Please wait...", visible=True)
|
187 |
+
main_interface = gr.Column(visible=False)
|
188 |
+
|
189 |
+
def initialize_model():
|
190 |
+
try:
|
191 |
+
load_model()
|
192 |
+
return {
|
193 |
+
loading_status: gr.update(value="Model loaded successfully!", visible=False),
|
194 |
+
main_interface: gr.update(visible=True),
|
195 |
+
}
|
196 |
+
except Exception as e:
|
197 |
+
print(f'Failed to load model with error: {e}')
|
198 |
+
return {
|
199 |
+
loading_status: gr.update(value=f"Failed to load model: {str(e)}", visible=True),
|
200 |
+
main_interface: gr.update(visible=True),
|
201 |
+
}
|
202 |
+
|
203 |
+
app.load(initialize_model, inputs=None, outputs=[loading_status, main_interface])
|
204 |
+
|
205 |
+
with main_interface:
|
206 |
+
with gr.Row():
|
207 |
+
local_prompt_list = []
|
208 |
+
canvas_list = []
|
209 |
+
random_mask_dir = gr.State(f'{random.randint(0, 1000000):08d}')
|
210 |
+
with gr.Column(scale=382, min_width=100):
|
211 |
+
model_type = gr.State('FLUX')
|
212 |
+
model_path = gr.State('FLUX.1-dev')
|
213 |
+
with gr.Accordion(label="Global prompt"):
|
214 |
+
prompt = gr.Textbox(label="Global Prompt", lines=3)
|
215 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="worst quality, low quality, monochrome, zombie, interlocked fingers, Aissist, cleavage, nsfw, blur,", lines=3)
|
216 |
+
with gr.Accordion(label="Inference Options", open=True):
|
217 |
+
seed = gr.Number(minimum=0, maximum=10**9, value=42, interactive=True, label="Random seed", show_label=True)
|
218 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=100, value=30, step=1, interactive=True, label="Inference steps")
|
219 |
+
cfg_scale = gr.Slider(minimum=2.0, maximum=10.0, value=3.0, step=0.1, interactive=True, label="Classifier-free guidance scale")
|
220 |
+
embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=3.5, step=0.1, interactive=True, label="Embedded guidance scale")
|
221 |
+
height = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Height")
|
222 |
+
width = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Width")
|
223 |
+
with gr.Accordion(label="Inpaint Input Image", open=False):
|
224 |
+
input_image = gr.Image(sources=None, show_label=False, interactive=True, type="pil")
|
225 |
+
background_weight = gr.Slider(minimum=0.0, maximum=1000., value=0., step=1, interactive=False, label="background_weight", visible=False)
|
226 |
+
|
227 |
+
with gr.Column():
|
228 |
+
reset_input_button = gr.Button(value="Reset Inpaint Input")
|
229 |
+
send_input_to_painter = gr.Button(value="Set as painter's background")
|
230 |
+
@gr.on(inputs=[input_image], outputs=[input_image], triggers=reset_input_button.click)
|
231 |
+
def reset_input_image(input_image):
|
232 |
+
return None
|
233 |
+
|
234 |
+
with gr.Column(scale=618, min_width=100):
|
235 |
+
with gr.Accordion(label="Entity Painter"):
|
236 |
+
for painter_layer_id in range(config["max_num_painter_layers"]):
|
237 |
+
with gr.Tab(label=f"Entity {painter_layer_id}"):
|
238 |
+
local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}")
|
239 |
+
canvas = gr.ImageEditor(
|
240 |
+
canvas_size=(512, 512),
|
241 |
+
sources=None,
|
242 |
+
layers=False,
|
243 |
+
interactive=True,
|
244 |
+
image_mode="RGBA",
|
245 |
+
brush=gr.Brush(
|
246 |
+
default_size=50,
|
247 |
+
default_color="#000000",
|
248 |
+
colors=["#000000"],
|
249 |
+
),
|
250 |
+
label="Entity Mask Painter",
|
251 |
+
key=f"canvas_{painter_layer_id}",
|
252 |
+
width=width,
|
253 |
+
height=height,
|
254 |
+
)
|
255 |
+
@gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear], show_progress="hidden")
|
256 |
+
def resize_canvas(height, width, canvas):
|
257 |
+
h, w = canvas["background"].shape[:2]
|
258 |
+
if h != height or width != w:
|
259 |
+
return np.ones((height, width, 3), dtype=np.uint8) * 255
|
260 |
+
else:
|
261 |
+
return canvas
|
262 |
+
local_prompt_list.append(local_prompt)
|
263 |
+
canvas_list.append(canvas)
|
264 |
+
with gr.Accordion(label="Results"):
|
265 |
+
run_button = gr.Button(value="Generate", variant="primary")
|
266 |
+
output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil")
|
267 |
+
with gr.Row():
|
268 |
+
with gr.Column():
|
269 |
+
output_to_painter_button = gr.Button(value="Set as painter's background")
|
270 |
+
with gr.Column():
|
271 |
+
return_with_mask = gr.Checkbox(value=False, interactive=True, label="show result with mask painting")
|
272 |
+
output_to_input_button = gr.Button(value="Set as input image", visible=False, interactive=False)
|
273 |
+
real_output = gr.State(None)
|
274 |
+
mask_out = gr.State(None)
|
275 |
+
|
276 |
+
@gr.on(
|
277 |
+
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, return_with_mask, seed, input_image, background_weight, random_mask_dir] + local_prompt_list + canvas_list,
|
278 |
+
outputs=[output_image, real_output, mask_out],
|
279 |
+
triggers=run_button.click
|
280 |
+
)
|
281 |
+
def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, return_with_mask, seed, input_image, background_weight, random_mask_dir, *args, progress=gr.Progress()):
|
282 |
+
_, pipe = load_model(model_type, model_path)
|
283 |
+
input_params = {
|
284 |
+
"prompt": prompt,
|
285 |
+
"negative_prompt": negative_prompt,
|
286 |
+
"cfg_scale": cfg_scale,
|
287 |
+
"num_inference_steps": num_inference_steps,
|
288 |
+
"height": height,
|
289 |
+
"width": width,
|
290 |
+
"progress_bar_cmd": progress.tqdm,
|
291 |
+
}
|
292 |
+
if isinstance(pipe, FluxImagePipeline):
|
293 |
+
input_params["embedded_guidance"] = embedded_guidance
|
294 |
+
if input_image is not None:
|
295 |
+
input_params["input_image"] = input_image.resize((width, height)).convert("RGB")
|
296 |
+
input_params["enable_eligen_inpaint"] = True
|
297 |
+
|
298 |
+
local_prompt_list, canvas_list = (
|
299 |
+
args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]],
|
300 |
+
args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]],
|
301 |
+
)
|
302 |
+
local_prompts, masks = [], []
|
303 |
+
for local_prompt, canvas in zip(local_prompt_list, canvas_list):
|
304 |
+
if isinstance(local_prompt, str) and len(local_prompt) > 0:
|
305 |
+
local_prompts.append(local_prompt)
|
306 |
+
masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB"))
|
307 |
+
entity_masks = None if len(masks) == 0 else masks
|
308 |
+
entity_prompts = None if len(local_prompts) == 0 else local_prompts
|
309 |
+
input_params.update({
|
310 |
+
"eligen_entity_prompts": entity_prompts,
|
311 |
+
"eligen_entity_masks": entity_masks,
|
312 |
+
})
|
313 |
+
torch.manual_seed(seed)
|
314 |
+
# save_mask_prompts(masks, local_prompts, prompt, seed, random_mask_dir)
|
315 |
+
image = pipe(**input_params)
|
316 |
+
masks = [mask.resize(image.size) for mask in masks]
|
317 |
+
image_with_mask = visualize_masks(image, masks, local_prompts)
|
318 |
+
|
319 |
+
real_output = gr.State(image)
|
320 |
+
mask_out = gr.State(image_with_mask)
|
321 |
+
|
322 |
+
if return_with_mask:
|
323 |
+
return image_with_mask, real_output, mask_out
|
324 |
+
return image, real_output, mask_out
|
325 |
+
|
326 |
+
@gr.on(inputs=[input_image] + canvas_list, outputs=canvas_list, triggers=send_input_to_painter.click)
|
327 |
+
def send_input_to_painter_background(input_image, *canvas_list):
|
328 |
+
if input_image is None:
|
329 |
+
return tuple(canvas_list)
|
330 |
+
for canvas in canvas_list:
|
331 |
+
h, w = canvas["background"].shape[:2]
|
332 |
+
canvas["background"] = input_image.resize((w, h))
|
333 |
+
return tuple(canvas_list)
|
334 |
+
@gr.on(inputs=[real_output] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click)
|
335 |
+
def send_output_to_painter_background(real_output, *canvas_list):
|
336 |
+
if real_output is None:
|
337 |
+
return tuple(canvas_list)
|
338 |
+
for canvas in canvas_list:
|
339 |
+
h, w = canvas["background"].shape[:2]
|
340 |
+
canvas["background"] = real_output.value.resize((w, h))
|
341 |
+
return tuple(canvas_list)
|
342 |
+
@gr.on(inputs=[return_with_mask, real_output, mask_out], outputs=[output_image], triggers=[return_with_mask.change], show_progress="hidden")
|
343 |
+
def show_output(return_with_mask, real_output, mask_out):
|
344 |
+
if return_with_mask:
|
345 |
+
return mask_out.value
|
346 |
+
else:
|
347 |
+
return real_output.value
|
348 |
+
@gr.on(inputs=[real_output], outputs=[input_image], triggers=output_to_input_button.click)
|
349 |
+
def send_output_to_pipe_input(real_output):
|
350 |
+
return real_output.value
|
351 |
+
|
352 |
+
with gr.Column():
|
353 |
+
gr.Markdown("## Examples")
|
354 |
+
for i in range(0, len(examples), 2):
|
355 |
+
with gr.Row():
|
356 |
+
if i < len(examples):
|
357 |
+
example = examples[i]
|
358 |
+
with gr.Column():
|
359 |
+
example_image = gr.Image(
|
360 |
+
value=f"data/examples/eligen/entity_control/example_{example['example_id']}/example_image.png",
|
361 |
+
label=example["description"],
|
362 |
+
interactive=False,
|
363 |
+
width=1024,
|
364 |
+
height=512
|
365 |
+
)
|
366 |
+
load_example_button = gr.Button(value=f"Load Example {example['example_id']}")
|
367 |
+
load_example_button.click(
|
368 |
+
load_example,
|
369 |
+
inputs=[load_example_button],
|
370 |
+
outputs=[num_inference_steps, prompt, negative_prompt, seed] + local_prompt_list + canvas_list
|
371 |
+
)
|
372 |
+
|
373 |
+
if i + 1 < len(examples):
|
374 |
+
example = examples[i + 1]
|
375 |
+
with gr.Column():
|
376 |
+
example_image = gr.Image(
|
377 |
+
value=f"data/examples/eligen/entity_control/example_{example['example_id']}/example_image.png",
|
378 |
+
label=example["description"],
|
379 |
+
interactive=False,
|
380 |
+
width=1024,
|
381 |
+
height=512
|
382 |
+
)
|
383 |
+
load_example_button = gr.Button(value=f"Load Example {example['example_id']}")
|
384 |
+
load_example_button.click(
|
385 |
+
load_example,
|
386 |
+
inputs=[load_example_button],
|
387 |
+
outputs=[num_inference_steps, prompt, negative_prompt, seed] + local_prompt_list + canvas_list
|
388 |
+
)
|
389 |
+
app.config["show_progress"] = "hidden"
|
390 |
+
app.launch()
|
apps/streamlit/DiffSynth_Studio.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Set web page format
|
2 |
+
import streamlit as st
|
3 |
+
st.set_page_config(layout="wide")
|
4 |
+
# Disable virtual VRAM on windows system
|
5 |
+
import torch
|
6 |
+
torch.cuda.set_per_process_memory_fraction(0.999, 0)
|
7 |
+
|
8 |
+
|
9 |
+
st.markdown("""
|
10 |
+
# DiffSynth Studio
|
11 |
+
|
12 |
+
[Source Code](https://github.com/Artiprocher/DiffSynth-Studio)
|
13 |
+
|
14 |
+
Welcome to DiffSynth Studio.
|
15 |
+
""")
|
apps/streamlit/pages/1_Image_Creator.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os, io, json, time
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import streamlit as st
|
5 |
+
st.set_page_config(layout="wide")
|
6 |
+
from streamlit_drawable_canvas import st_canvas
|
7 |
+
from diffsynth.models import ModelManager
|
8 |
+
from diffsynth.pipelines import SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline
|
9 |
+
from diffsynth.data.video import crop_and_resize
|
10 |
+
|
11 |
+
|
12 |
+
config = {
|
13 |
+
"Stable Diffusion": {
|
14 |
+
"model_folder": "models/stable_diffusion",
|
15 |
+
"pipeline_class": SDImagePipeline,
|
16 |
+
"fixed_parameters": {}
|
17 |
+
},
|
18 |
+
"Stable Diffusion XL": {
|
19 |
+
"model_folder": "models/stable_diffusion_xl",
|
20 |
+
"pipeline_class": SDXLImagePipeline,
|
21 |
+
"fixed_parameters": {}
|
22 |
+
},
|
23 |
+
"Stable Diffusion 3": {
|
24 |
+
"model_folder": "models/stable_diffusion_3",
|
25 |
+
"pipeline_class": SD3ImagePipeline,
|
26 |
+
"fixed_parameters": {}
|
27 |
+
},
|
28 |
+
"Stable Diffusion XL Turbo": {
|
29 |
+
"model_folder": "models/stable_diffusion_xl_turbo",
|
30 |
+
"pipeline_class": SDXLImagePipeline,
|
31 |
+
"fixed_parameters": {
|
32 |
+
"negative_prompt": "",
|
33 |
+
"cfg_scale": 1.0,
|
34 |
+
"num_inference_steps": 1,
|
35 |
+
"height": 512,
|
36 |
+
"width": 512,
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"Kolors": {
|
40 |
+
"model_folder": "models/kolors",
|
41 |
+
"pipeline_class": SDXLImagePipeline,
|
42 |
+
"fixed_parameters": {}
|
43 |
+
},
|
44 |
+
"HunyuanDiT": {
|
45 |
+
"model_folder": "models/HunyuanDiT",
|
46 |
+
"pipeline_class": HunyuanDiTImagePipeline,
|
47 |
+
"fixed_parameters": {
|
48 |
+
"height": 1024,
|
49 |
+
"width": 1024,
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"FLUX": {
|
53 |
+
"model_folder": "models/FLUX",
|
54 |
+
"pipeline_class": FluxImagePipeline,
|
55 |
+
"fixed_parameters": {
|
56 |
+
"cfg_scale": 1.0,
|
57 |
+
}
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
def load_model_list(model_type):
|
63 |
+
folder = config[model_type]["model_folder"]
|
64 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
|
65 |
+
if model_type in ["HunyuanDiT", "Kolors", "FLUX"]:
|
66 |
+
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
|
67 |
+
file_list = sorted(file_list)
|
68 |
+
return file_list
|
69 |
+
|
70 |
+
|
71 |
+
def release_model():
|
72 |
+
if "model_manager" in st.session_state:
|
73 |
+
st.session_state["model_manager"].to("cpu")
|
74 |
+
del st.session_state["loaded_model_path"]
|
75 |
+
del st.session_state["model_manager"]
|
76 |
+
del st.session_state["pipeline"]
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
|
79 |
+
|
80 |
+
def load_model(model_type, model_path):
|
81 |
+
model_manager = ModelManager()
|
82 |
+
if model_type == "HunyuanDiT":
|
83 |
+
model_manager.load_models([
|
84 |
+
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
|
85 |
+
os.path.join(model_path, "mt5/pytorch_model.bin"),
|
86 |
+
os.path.join(model_path, "model/pytorch_model_ema.pt"),
|
87 |
+
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
|
88 |
+
])
|
89 |
+
elif model_type == "Kolors":
|
90 |
+
model_manager.load_models([
|
91 |
+
os.path.join(model_path, "text_encoder"),
|
92 |
+
os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"),
|
93 |
+
os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"),
|
94 |
+
])
|
95 |
+
elif model_type == "FLUX":
|
96 |
+
model_manager.torch_dtype = torch.bfloat16
|
97 |
+
file_list = [
|
98 |
+
os.path.join(model_path, "text_encoder/model.safetensors"),
|
99 |
+
os.path.join(model_path, "text_encoder_2"),
|
100 |
+
]
|
101 |
+
for file_name in os.listdir(model_path):
|
102 |
+
if file_name.endswith(".safetensors"):
|
103 |
+
file_list.append(os.path.join(model_path, file_name))
|
104 |
+
model_manager.load_models(file_list)
|
105 |
+
else:
|
106 |
+
model_manager.load_model(model_path)
|
107 |
+
pipeline = config[model_type]["pipeline_class"].from_model_manager(model_manager)
|
108 |
+
st.session_state.loaded_model_path = model_path
|
109 |
+
st.session_state.model_manager = model_manager
|
110 |
+
st.session_state.pipeline = pipeline
|
111 |
+
return model_manager, pipeline
|
112 |
+
|
113 |
+
|
114 |
+
def use_output_image_as_input(update=True):
|
115 |
+
# Search for input image
|
116 |
+
output_image_id = 0
|
117 |
+
selected_output_image = None
|
118 |
+
while True:
|
119 |
+
if f"use_output_as_input_{output_image_id}" not in st.session_state:
|
120 |
+
break
|
121 |
+
if st.session_state[f"use_output_as_input_{output_image_id}"]:
|
122 |
+
selected_output_image = st.session_state["output_images"][output_image_id]
|
123 |
+
break
|
124 |
+
output_image_id += 1
|
125 |
+
if update and selected_output_image is not None:
|
126 |
+
st.session_state["input_image"] = selected_output_image
|
127 |
+
return selected_output_image is not None
|
128 |
+
|
129 |
+
|
130 |
+
def apply_stroke_to_image(stroke_image, image):
|
131 |
+
image = np.array(image.convert("RGB")).astype(np.float32)
|
132 |
+
height, width, _ = image.shape
|
133 |
+
|
134 |
+
stroke_image = np.array(Image.fromarray(stroke_image).resize((width, height))).astype(np.float32)
|
135 |
+
weight = stroke_image[:, :, -1:] / 255
|
136 |
+
stroke_image = stroke_image[:, :, :-1]
|
137 |
+
|
138 |
+
image = stroke_image * weight + image * (1 - weight)
|
139 |
+
image = np.clip(image, 0, 255).astype(np.uint8)
|
140 |
+
image = Image.fromarray(image)
|
141 |
+
return image
|
142 |
+
|
143 |
+
|
144 |
+
@st.cache_data
|
145 |
+
def image2bits(image):
|
146 |
+
image_byte = io.BytesIO()
|
147 |
+
image.save(image_byte, format="PNG")
|
148 |
+
image_byte = image_byte.getvalue()
|
149 |
+
return image_byte
|
150 |
+
|
151 |
+
|
152 |
+
def show_output_image(image):
|
153 |
+
st.image(image, use_column_width="always")
|
154 |
+
st.button("Use it as input image", key=f"use_output_as_input_{image_id}")
|
155 |
+
st.download_button("Download", data=image2bits(image), file_name="image.png", mime="image/png", key=f"download_output_{image_id}")
|
156 |
+
|
157 |
+
|
158 |
+
column_input, column_output = st.columns(2)
|
159 |
+
with st.sidebar:
|
160 |
+
# Select a model
|
161 |
+
with st.expander("Model", expanded=True):
|
162 |
+
model_type = st.selectbox("Model type", [model_type_ for model_type_ in config])
|
163 |
+
fixed_parameters = config[model_type]["fixed_parameters"]
|
164 |
+
model_path_list = ["None"] + load_model_list(model_type)
|
165 |
+
model_path = st.selectbox("Model path", model_path_list)
|
166 |
+
|
167 |
+
# Load the model
|
168 |
+
if model_path == "None":
|
169 |
+
# No models are selected. Release VRAM.
|
170 |
+
st.markdown("No models are selected.")
|
171 |
+
release_model()
|
172 |
+
else:
|
173 |
+
# A model is selected.
|
174 |
+
model_path = os.path.join(config[model_type]["model_folder"], model_path)
|
175 |
+
if st.session_state.get("loaded_model_path", "") != model_path:
|
176 |
+
# The loaded model is not the selected model. Reload it.
|
177 |
+
st.markdown(f"Loading model at {model_path}.")
|
178 |
+
st.markdown("Please wait a moment...")
|
179 |
+
release_model()
|
180 |
+
model_manager, pipeline = load_model(model_type, model_path)
|
181 |
+
st.markdown("Done.")
|
182 |
+
else:
|
183 |
+
# The loaded model is not the selected model. Fetch it from `st.session_state`.
|
184 |
+
st.markdown(f"Loading model at {model_path}.")
|
185 |
+
st.markdown("Please wait a moment...")
|
186 |
+
model_manager, pipeline = st.session_state.model_manager, st.session_state.pipeline
|
187 |
+
st.markdown("Done.")
|
188 |
+
|
189 |
+
# Show parameters
|
190 |
+
with st.expander("Prompt", expanded=True):
|
191 |
+
prompt = st.text_area("Positive prompt")
|
192 |
+
if "negative_prompt" in fixed_parameters:
|
193 |
+
negative_prompt = fixed_parameters["negative_prompt"]
|
194 |
+
else:
|
195 |
+
negative_prompt = st.text_area("Negative prompt")
|
196 |
+
if "cfg_scale" in fixed_parameters:
|
197 |
+
cfg_scale = fixed_parameters["cfg_scale"]
|
198 |
+
else:
|
199 |
+
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.5)
|
200 |
+
with st.expander("Image", expanded=True):
|
201 |
+
if "num_inference_steps" in fixed_parameters:
|
202 |
+
num_inference_steps = fixed_parameters["num_inference_steps"]
|
203 |
+
else:
|
204 |
+
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=20)
|
205 |
+
if "height" in fixed_parameters:
|
206 |
+
height = fixed_parameters["height"]
|
207 |
+
else:
|
208 |
+
height = st.select_slider("Height", options=[256, 512, 768, 1024, 2048], value=512)
|
209 |
+
if "width" in fixed_parameters:
|
210 |
+
width = fixed_parameters["width"]
|
211 |
+
else:
|
212 |
+
width = st.select_slider("Width", options=[256, 512, 768, 1024, 2048], value=512)
|
213 |
+
num_images = st.number_input("Number of images", value=2)
|
214 |
+
use_fixed_seed = st.checkbox("Use fixed seed", value=False)
|
215 |
+
if use_fixed_seed:
|
216 |
+
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
|
217 |
+
|
218 |
+
# Other fixed parameters
|
219 |
+
denoising_strength = 1.0
|
220 |
+
repetition = 1
|
221 |
+
|
222 |
+
|
223 |
+
# Show input image
|
224 |
+
with column_input:
|
225 |
+
with st.expander("Input image (Optional)", expanded=True):
|
226 |
+
with st.container(border=True):
|
227 |
+
column_white_board, column_upload_image = st.columns([1, 2])
|
228 |
+
with column_white_board:
|
229 |
+
create_white_board = st.button("Create white board")
|
230 |
+
delete_input_image = st.button("Delete input image")
|
231 |
+
with column_upload_image:
|
232 |
+
upload_image = st.file_uploader("Upload image", type=["png", "jpg"], key="upload_image")
|
233 |
+
|
234 |
+
if upload_image is not None:
|
235 |
+
st.session_state["input_image"] = crop_and_resize(Image.open(upload_image), height, width)
|
236 |
+
elif create_white_board:
|
237 |
+
st.session_state["input_image"] = Image.fromarray(np.ones((height, width, 3), dtype=np.uint8) * 255)
|
238 |
+
else:
|
239 |
+
use_output_image_as_input()
|
240 |
+
|
241 |
+
if delete_input_image and "input_image" in st.session_state:
|
242 |
+
del st.session_state.input_image
|
243 |
+
if delete_input_image and "upload_image" in st.session_state:
|
244 |
+
del st.session_state.upload_image
|
245 |
+
|
246 |
+
input_image = st.session_state.get("input_image", None)
|
247 |
+
if input_image is not None:
|
248 |
+
with st.container(border=True):
|
249 |
+
column_drawing_mode, column_color_1, column_color_2 = st.columns([4, 1, 1])
|
250 |
+
with column_drawing_mode:
|
251 |
+
drawing_mode = st.radio("Drawing tool", ["transform", "freedraw", "line", "rect"], horizontal=True, index=1)
|
252 |
+
with column_color_1:
|
253 |
+
stroke_color = st.color_picker("Stroke color")
|
254 |
+
with column_color_2:
|
255 |
+
fill_color = st.color_picker("Fill color")
|
256 |
+
stroke_width = st.slider("Stroke width", min_value=1, max_value=50, value=10)
|
257 |
+
with st.container(border=True):
|
258 |
+
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=0.7)
|
259 |
+
repetition = st.slider("Repetition", min_value=1, max_value=8, value=1)
|
260 |
+
with st.container(border=True):
|
261 |
+
input_width, input_height = input_image.size
|
262 |
+
canvas_result = st_canvas(
|
263 |
+
fill_color=fill_color,
|
264 |
+
stroke_width=stroke_width,
|
265 |
+
stroke_color=stroke_color,
|
266 |
+
background_color="rgba(255, 255, 255, 0)",
|
267 |
+
background_image=input_image,
|
268 |
+
update_streamlit=True,
|
269 |
+
height=int(512 / input_width * input_height),
|
270 |
+
width=512,
|
271 |
+
drawing_mode=drawing_mode,
|
272 |
+
key="canvas"
|
273 |
+
)
|
274 |
+
|
275 |
+
num_painter_layer = st.number_input("Number of painter layers", min_value=0, max_value=10, step=1, value=0)
|
276 |
+
local_prompts, masks, mask_scales = [], [], []
|
277 |
+
white_board = Image.fromarray(np.ones((512, 512, 3), dtype=np.uint8) * 255)
|
278 |
+
painter_layers_json_data = []
|
279 |
+
for painter_tab_id in range(num_painter_layer):
|
280 |
+
with st.expander(f"Painter layer {painter_tab_id}", expanded=True):
|
281 |
+
enable_local_prompt = st.checkbox(f"Enable prompt {painter_tab_id}", value=True)
|
282 |
+
local_prompt = st.text_area(f"Prompt {painter_tab_id}")
|
283 |
+
mask_scale = st.slider(f"Mask scale {painter_tab_id}", min_value=0.0, max_value=3.0, value=1.0)
|
284 |
+
stroke_width = st.slider(f"Stroke width {painter_tab_id}", min_value=1, max_value=300, value=100)
|
285 |
+
canvas_result_local = st_canvas(
|
286 |
+
fill_color="#000000",
|
287 |
+
stroke_width=stroke_width,
|
288 |
+
stroke_color="#000000",
|
289 |
+
background_color="rgba(255, 255, 255, 0)",
|
290 |
+
background_image=white_board,
|
291 |
+
update_streamlit=True,
|
292 |
+
height=512,
|
293 |
+
width=512,
|
294 |
+
drawing_mode="freedraw",
|
295 |
+
key=f"canvas_{painter_tab_id}"
|
296 |
+
)
|
297 |
+
if canvas_result_local.json_data is not None:
|
298 |
+
painter_layers_json_data.append(canvas_result_local.json_data.copy())
|
299 |
+
painter_layers_json_data[-1]["prompt"] = local_prompt
|
300 |
+
if enable_local_prompt:
|
301 |
+
local_prompts.append(local_prompt)
|
302 |
+
if canvas_result_local.image_data is not None:
|
303 |
+
mask = apply_stroke_to_image(canvas_result_local.image_data, white_board)
|
304 |
+
else:
|
305 |
+
mask = white_board
|
306 |
+
mask = Image.fromarray(255 - np.array(mask))
|
307 |
+
masks.append(mask)
|
308 |
+
mask_scales.append(mask_scale)
|
309 |
+
save_painter_layers = st.button("Save painter layers")
|
310 |
+
if save_painter_layers:
|
311 |
+
os.makedirs("data/painter_layers", exist_ok=True)
|
312 |
+
json_file_path = f"data/painter_layers/{time.time_ns()}.json"
|
313 |
+
with open(json_file_path, "w") as f:
|
314 |
+
json.dump(painter_layers_json_data, f, indent=4)
|
315 |
+
st.markdown(f"Painter layers are saved in {json_file_path}.")
|
316 |
+
|
317 |
+
|
318 |
+
with column_output:
|
319 |
+
run_button = st.button("Generate image", type="primary")
|
320 |
+
auto_update = st.checkbox("Auto update", value=False)
|
321 |
+
num_image_columns = st.slider("Columns", min_value=1, max_value=8, value=2)
|
322 |
+
image_columns = st.columns(num_image_columns)
|
323 |
+
|
324 |
+
# Run
|
325 |
+
if (run_button or auto_update) and model_path != "None":
|
326 |
+
|
327 |
+
if input_image is not None:
|
328 |
+
input_image = input_image.resize((width, height))
|
329 |
+
if canvas_result.image_data is not None:
|
330 |
+
input_image = apply_stroke_to_image(canvas_result.image_data, input_image)
|
331 |
+
|
332 |
+
output_images = []
|
333 |
+
for image_id in range(num_images * repetition):
|
334 |
+
if use_fixed_seed:
|
335 |
+
torch.manual_seed(seed + image_id)
|
336 |
+
else:
|
337 |
+
torch.manual_seed(np.random.randint(0, 10**9))
|
338 |
+
if image_id >= num_images:
|
339 |
+
input_image = output_images[image_id - num_images]
|
340 |
+
with image_columns[image_id % num_image_columns]:
|
341 |
+
progress_bar_st = st.progress(0.0)
|
342 |
+
image = pipeline(
|
343 |
+
prompt, negative_prompt=negative_prompt,
|
344 |
+
local_prompts=local_prompts, masks=masks, mask_scales=mask_scales,
|
345 |
+
cfg_scale=cfg_scale, num_inference_steps=num_inference_steps,
|
346 |
+
height=height, width=width,
|
347 |
+
input_image=input_image, denoising_strength=denoising_strength,
|
348 |
+
progress_bar_st=progress_bar_st
|
349 |
+
)
|
350 |
+
output_images.append(image)
|
351 |
+
progress_bar_st.progress(1.0)
|
352 |
+
show_output_image(image)
|
353 |
+
st.session_state["output_images"] = output_images
|
354 |
+
|
355 |
+
elif "output_images" in st.session_state:
|
356 |
+
for image_id in range(len(st.session_state.output_images)):
|
357 |
+
with image_columns[image_id % num_image_columns]:
|
358 |
+
image = st.session_state.output_images[image_id]
|
359 |
+
progress_bar = st.progress(1.0)
|
360 |
+
show_output_image(image)
|
361 |
+
if "upload_image" in st.session_state and use_output_image_as_input(update=False):
|
362 |
+
st.markdown("If you want to use an output image as input image, please delete the uploaded image manually.")
|
apps/streamlit/pages/2_Video_Creator.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
from diffsynth import SDVideoPipelineRunner
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def load_model_list(folder):
|
9 |
+
file_list = os.listdir(folder)
|
10 |
+
file_list = [i for i in file_list if i.endswith(".safetensors") or i.endswith(".pth") or i.endswith(".ckpt")]
|
11 |
+
file_list = sorted(file_list)
|
12 |
+
return file_list
|
13 |
+
|
14 |
+
|
15 |
+
def match_processor_id(model_name, supported_processor_id_list):
|
16 |
+
sorted_processor_id = [i[1] for i in sorted([(-len(i), i) for i in supported_processor_id_list])]
|
17 |
+
for processor_id in sorted_processor_id:
|
18 |
+
if processor_id in model_name:
|
19 |
+
return supported_processor_id_list.index(processor_id) + 1
|
20 |
+
return 0
|
21 |
+
|
22 |
+
|
23 |
+
config = {
|
24 |
+
"models": {
|
25 |
+
"model_list": [],
|
26 |
+
"textual_inversion_folder": "models/textual_inversion",
|
27 |
+
"device": "cuda",
|
28 |
+
"lora_alphas": [],
|
29 |
+
"controlnet_units": []
|
30 |
+
},
|
31 |
+
"data": {
|
32 |
+
"input_frames": None,
|
33 |
+
"controlnet_frames": [],
|
34 |
+
"output_folder": "output",
|
35 |
+
"fps": 60
|
36 |
+
},
|
37 |
+
"pipeline": {
|
38 |
+
"seed": 0,
|
39 |
+
"pipeline_inputs": {}
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
with st.expander("Model", expanded=True):
|
45 |
+
stable_diffusion_ckpt = st.selectbox("Stable Diffusion", ["None"] + load_model_list("models/stable_diffusion"))
|
46 |
+
if stable_diffusion_ckpt != "None":
|
47 |
+
config["models"]["model_list"].append(os.path.join("models/stable_diffusion", stable_diffusion_ckpt))
|
48 |
+
animatediff_ckpt = st.selectbox("AnimateDiff", ["None"] + load_model_list("models/AnimateDiff"))
|
49 |
+
if animatediff_ckpt != "None":
|
50 |
+
config["models"]["model_list"].append(os.path.join("models/AnimateDiff", animatediff_ckpt))
|
51 |
+
column_lora, column_lora_alpha = st.columns([2, 1])
|
52 |
+
with column_lora:
|
53 |
+
sd_lora_ckpt = st.selectbox("LoRA", ["None"] + load_model_list("models/lora"))
|
54 |
+
with column_lora_alpha:
|
55 |
+
lora_alpha = st.slider("LoRA Alpha", min_value=-4.0, max_value=4.0, value=1.0, step=0.1)
|
56 |
+
if sd_lora_ckpt != "None":
|
57 |
+
config["models"]["model_list"].append(os.path.join("models/lora", sd_lora_ckpt))
|
58 |
+
config["models"]["lora_alphas"].append(lora_alpha)
|
59 |
+
|
60 |
+
|
61 |
+
with st.expander("Data", expanded=True):
|
62 |
+
with st.container(border=True):
|
63 |
+
input_video = st.text_input("Input Video File Path (e.g., data/your_video.mp4)", value="")
|
64 |
+
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
|
65 |
+
with column_height:
|
66 |
+
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
|
67 |
+
with column_width:
|
68 |
+
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
|
69 |
+
with column_start_frame_index:
|
70 |
+
start_frame_id = st.number_input("Start Frame id", value=0)
|
71 |
+
with column_end_frame_index:
|
72 |
+
end_frame_id = st.number_input("End Frame id", value=16)
|
73 |
+
if input_video != "":
|
74 |
+
config["data"]["input_frames"] = {
|
75 |
+
"video_file": input_video,
|
76 |
+
"image_folder": None,
|
77 |
+
"height": height,
|
78 |
+
"width": width,
|
79 |
+
"start_frame_id": start_frame_id,
|
80 |
+
"end_frame_id": end_frame_id
|
81 |
+
}
|
82 |
+
with st.container(border=True):
|
83 |
+
output_video = st.text_input("Output Video File Path (e.g., data/a_folder_to_save_something)", value="output")
|
84 |
+
fps = st.number_input("FPS", value=60)
|
85 |
+
config["data"]["output_folder"] = output_video
|
86 |
+
config["data"]["fps"] = fps
|
87 |
+
|
88 |
+
|
89 |
+
with st.expander("ControlNet Units", expanded=True):
|
90 |
+
supported_processor_id_list = ["canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "tile"]
|
91 |
+
controlnet_units = st.tabs(["ControlNet Unit 0", "ControlNet Unit 1", "ControlNet Unit 2"])
|
92 |
+
for controlnet_id in range(len(controlnet_units)):
|
93 |
+
with controlnet_units[controlnet_id]:
|
94 |
+
controlnet_ckpt = st.selectbox("ControlNet", ["None"] + load_model_list("models/ControlNet"),
|
95 |
+
key=f"controlnet_ckpt_{controlnet_id}")
|
96 |
+
processor_id = st.selectbox("Processor", ["None"] + supported_processor_id_list,
|
97 |
+
index=match_processor_id(controlnet_ckpt, supported_processor_id_list),
|
98 |
+
disabled=controlnet_ckpt == "None", key=f"processor_id_{controlnet_id}")
|
99 |
+
controlnet_scale = st.slider("Scale", min_value=0.0, max_value=1.0, step=0.01, value=0.5,
|
100 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_scale_{controlnet_id}")
|
101 |
+
use_input_video_as_controlnet_input = st.checkbox("Use input video as ControlNet input", value=True,
|
102 |
+
disabled=controlnet_ckpt == "None",
|
103 |
+
key=f"use_input_video_as_controlnet_input_{controlnet_id}")
|
104 |
+
if not use_input_video_as_controlnet_input:
|
105 |
+
controlnet_input_video = st.text_input("ControlNet Input Video File Path", value="",
|
106 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_input_video_{controlnet_id}")
|
107 |
+
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
|
108 |
+
with column_height:
|
109 |
+
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
|
110 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_height_{controlnet_id}")
|
111 |
+
with column_width:
|
112 |
+
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
|
113 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_width_{controlnet_id}")
|
114 |
+
with column_start_frame_index:
|
115 |
+
start_frame_id = st.number_input("Start Frame id", value=0,
|
116 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_start_frame_id_{controlnet_id}")
|
117 |
+
with column_end_frame_index:
|
118 |
+
end_frame_id = st.number_input("End Frame id", value=16,
|
119 |
+
disabled=controlnet_ckpt == "None", key=f"controlnet_end_frame_id_{controlnet_id}")
|
120 |
+
if input_video != "":
|
121 |
+
config["data"]["input_video"] = {
|
122 |
+
"video_file": input_video,
|
123 |
+
"image_folder": None,
|
124 |
+
"height": height,
|
125 |
+
"width": width,
|
126 |
+
"start_frame_id": start_frame_id,
|
127 |
+
"end_frame_id": end_frame_id
|
128 |
+
}
|
129 |
+
if controlnet_ckpt != "None":
|
130 |
+
config["models"]["model_list"].append(os.path.join("models/ControlNet", controlnet_ckpt))
|
131 |
+
config["models"]["controlnet_units"].append({
|
132 |
+
"processor_id": processor_id,
|
133 |
+
"model_path": os.path.join("models/ControlNet", controlnet_ckpt),
|
134 |
+
"scale": controlnet_scale,
|
135 |
+
})
|
136 |
+
if use_input_video_as_controlnet_input:
|
137 |
+
config["data"]["controlnet_frames"].append(config["data"]["input_frames"])
|
138 |
+
else:
|
139 |
+
config["data"]["controlnet_frames"].append({
|
140 |
+
"video_file": input_video,
|
141 |
+
"image_folder": None,
|
142 |
+
"height": height,
|
143 |
+
"width": width,
|
144 |
+
"start_frame_id": start_frame_id,
|
145 |
+
"end_frame_id": end_frame_id
|
146 |
+
})
|
147 |
+
|
148 |
+
|
149 |
+
with st.container(border=True):
|
150 |
+
with st.expander("Seed", expanded=True):
|
151 |
+
use_fixed_seed = st.checkbox("Use fixed seed", value=False)
|
152 |
+
if use_fixed_seed:
|
153 |
+
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
|
154 |
+
else:
|
155 |
+
seed = np.random.randint(0, 10**9)
|
156 |
+
with st.expander("Textual Guidance", expanded=True):
|
157 |
+
prompt = st.text_area("Positive prompt")
|
158 |
+
negative_prompt = st.text_area("Negative prompt")
|
159 |
+
column_cfg_scale, column_clip_skip = st.columns(2)
|
160 |
+
with column_cfg_scale:
|
161 |
+
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.0)
|
162 |
+
with column_clip_skip:
|
163 |
+
clip_skip = st.slider("Clip Skip", min_value=1, max_value=4, value=1)
|
164 |
+
with st.expander("Denoising", expanded=True):
|
165 |
+
column_num_inference_steps, column_denoising_strength = st.columns(2)
|
166 |
+
with column_num_inference_steps:
|
167 |
+
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=10)
|
168 |
+
with column_denoising_strength:
|
169 |
+
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=1.0)
|
170 |
+
with st.expander("Efficiency", expanded=False):
|
171 |
+
animatediff_batch_size = st.slider("Animatediff batch size (sliding window size)", min_value=1, max_value=32, value=16, step=1)
|
172 |
+
animatediff_stride = st.slider("Animatediff stride",
|
173 |
+
min_value=1,
|
174 |
+
max_value=max(2, animatediff_batch_size),
|
175 |
+
value=max(1, animatediff_batch_size // 2),
|
176 |
+
step=1)
|
177 |
+
unet_batch_size = st.slider("UNet batch size", min_value=1, max_value=32, value=1, step=1)
|
178 |
+
controlnet_batch_size = st.slider("ControlNet batch size", min_value=1, max_value=32, value=1, step=1)
|
179 |
+
cross_frame_attention = st.checkbox("Enable Cross-Frame Attention", value=False)
|
180 |
+
config["pipeline"]["seed"] = seed
|
181 |
+
config["pipeline"]["pipeline_inputs"] = {
|
182 |
+
"prompt": prompt,
|
183 |
+
"negative_prompt": negative_prompt,
|
184 |
+
"cfg_scale": cfg_scale,
|
185 |
+
"clip_skip": clip_skip,
|
186 |
+
"denoising_strength": denoising_strength,
|
187 |
+
"num_inference_steps": num_inference_steps,
|
188 |
+
"animatediff_batch_size": animatediff_batch_size,
|
189 |
+
"animatediff_stride": animatediff_stride,
|
190 |
+
"unet_batch_size": unet_batch_size,
|
191 |
+
"controlnet_batch_size": controlnet_batch_size,
|
192 |
+
"cross_frame_attention": cross_frame_attention,
|
193 |
+
}
|
194 |
+
|
195 |
+
run_button = st.button("☢️Run☢️", type="primary")
|
196 |
+
if run_button:
|
197 |
+
SDVideoPipelineRunner(in_streamlit=True).run(config)
|
diffsynth.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: diffsynth
|
3 |
+
Version: 1.1.2
|
4 |
+
Summary: Enjoy the magic of Diffusion models!
|
5 |
+
Author: Artiprocher
|
6 |
+
Classifier: Programming Language :: Python :: 3
|
7 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
8 |
+
Classifier: Operating System :: OS Independent
|
9 |
+
Requires-Python: >=3.6
|
10 |
+
License-File: LICENSE
|
11 |
+
Requires-Dist: torch>=2.0.0
|
12 |
+
Requires-Dist: torchvision
|
13 |
+
Requires-Dist: cupy-cuda12x
|
14 |
+
Requires-Dist: transformers==4.46.2
|
15 |
+
Requires-Dist: controlnet-aux==0.0.7
|
16 |
+
Requires-Dist: imageio
|
17 |
+
Requires-Dist: imageio[ffmpeg]
|
18 |
+
Requires-Dist: safetensors
|
19 |
+
Requires-Dist: einops
|
20 |
+
Requires-Dist: sentencepiece
|
21 |
+
Requires-Dist: protobuf
|
22 |
+
Requires-Dist: modelscope
|
23 |
+
Requires-Dist: ftfy
|
diffsynth.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LICENSE
|
2 |
+
README.md
|
3 |
+
setup.py
|
4 |
+
diffsynth/__init__.py
|
5 |
+
diffsynth.egg-info/PKG-INFO
|
6 |
+
diffsynth.egg-info/SOURCES.txt
|
7 |
+
diffsynth.egg-info/dependency_links.txt
|
8 |
+
diffsynth.egg-info/requires.txt
|
9 |
+
diffsynth.egg-info/top_level.txt
|
10 |
+
diffsynth/configs/__init__.py
|
11 |
+
diffsynth/configs/model_config.py
|
12 |
+
diffsynth/controlnets/__init__.py
|
13 |
+
diffsynth/controlnets/controlnet_unit.py
|
14 |
+
diffsynth/controlnets/processors.py
|
15 |
+
diffsynth/data/__init__.py
|
16 |
+
diffsynth/data/simple_text_image.py
|
17 |
+
diffsynth/data/video.py
|
18 |
+
diffsynth/extensions/__init__.py
|
19 |
+
diffsynth/extensions/ESRGAN/__init__.py
|
20 |
+
diffsynth/extensions/FastBlend/__init__.py
|
21 |
+
diffsynth/extensions/FastBlend/api.py
|
22 |
+
diffsynth/extensions/FastBlend/cupy_kernels.py
|
23 |
+
diffsynth/extensions/FastBlend/data.py
|
24 |
+
diffsynth/extensions/FastBlend/patch_match.py
|
25 |
+
diffsynth/extensions/FastBlend/runners/__init__.py
|
26 |
+
diffsynth/extensions/FastBlend/runners/accurate.py
|
27 |
+
diffsynth/extensions/FastBlend/runners/balanced.py
|
28 |
+
diffsynth/extensions/FastBlend/runners/fast.py
|
29 |
+
diffsynth/extensions/FastBlend/runners/interpolation.py
|
30 |
+
diffsynth/extensions/ImageQualityMetric/__init__.py
|
31 |
+
diffsynth/extensions/ImageQualityMetric/aesthetic.py
|
32 |
+
diffsynth/extensions/ImageQualityMetric/clip.py
|
33 |
+
diffsynth/extensions/ImageQualityMetric/config.py
|
34 |
+
diffsynth/extensions/ImageQualityMetric/hps.py
|
35 |
+
diffsynth/extensions/ImageQualityMetric/imagereward.py
|
36 |
+
diffsynth/extensions/ImageQualityMetric/mps.py
|
37 |
+
diffsynth/extensions/ImageQualityMetric/pickscore.py
|
38 |
+
diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py
|
39 |
+
diffsynth/extensions/ImageQualityMetric/BLIP/blip.py
|
40 |
+
diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py
|
41 |
+
diffsynth/extensions/ImageQualityMetric/BLIP/med.py
|
42 |
+
diffsynth/extensions/ImageQualityMetric/BLIP/vit.py
|
43 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py
|
44 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py
|
45 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/constants.py
|
46 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/factory.py
|
47 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/generation_utils.py
|
48 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py
|
49 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py
|
50 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/loss.py
|
51 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/model.py
|
52 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py
|
53 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/openai.py
|
54 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py
|
55 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py
|
56 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py
|
57 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py
|
58 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/transform.py
|
59 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/transformer.py
|
60 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/utils.py
|
61 |
+
diffsynth/extensions/ImageQualityMetric/open_clip/version.py
|
62 |
+
diffsynth/extensions/ImageQualityMetric/trainer/__init__.py
|
63 |
+
diffsynth/extensions/ImageQualityMetric/trainer/models/__init__.py
|
64 |
+
diffsynth/extensions/ImageQualityMetric/trainer/models/base_model.py
|
65 |
+
diffsynth/extensions/ImageQualityMetric/trainer/models/clip_model.py
|
66 |
+
diffsynth/extensions/ImageQualityMetric/trainer/models/cross_modeling.py
|
67 |
+
diffsynth/extensions/RIFE/__init__.py
|
68 |
+
diffsynth/models/__init__.py
|
69 |
+
diffsynth/models/attention.py
|
70 |
+
diffsynth/models/cog_dit.py
|
71 |
+
diffsynth/models/cog_vae.py
|
72 |
+
diffsynth/models/downloader.py
|
73 |
+
diffsynth/models/flux_controlnet.py
|
74 |
+
diffsynth/models/flux_dit.py
|
75 |
+
diffsynth/models/flux_ipadapter.py
|
76 |
+
diffsynth/models/flux_text_encoder.py
|
77 |
+
diffsynth/models/flux_vae.py
|
78 |
+
diffsynth/models/hunyuan_dit.py
|
79 |
+
diffsynth/models/hunyuan_dit_text_encoder.py
|
80 |
+
diffsynth/models/hunyuan_video_dit.py
|
81 |
+
diffsynth/models/hunyuan_video_text_encoder.py
|
82 |
+
diffsynth/models/hunyuan_video_vae_decoder.py
|
83 |
+
diffsynth/models/hunyuan_video_vae_encoder.py
|
84 |
+
diffsynth/models/kolors_text_encoder.py
|
85 |
+
diffsynth/models/lora.py
|
86 |
+
diffsynth/models/model_manager.py
|
87 |
+
diffsynth/models/omnigen.py
|
88 |
+
diffsynth/models/sd3_dit.py
|
89 |
+
diffsynth/models/sd3_text_encoder.py
|
90 |
+
diffsynth/models/sd3_vae_decoder.py
|
91 |
+
diffsynth/models/sd3_vae_encoder.py
|
92 |
+
diffsynth/models/sd_controlnet.py
|
93 |
+
diffsynth/models/sd_ipadapter.py
|
94 |
+
diffsynth/models/sd_motion.py
|
95 |
+
diffsynth/models/sd_text_encoder.py
|
96 |
+
diffsynth/models/sd_unet.py
|
97 |
+
diffsynth/models/sd_vae_decoder.py
|
98 |
+
diffsynth/models/sd_vae_encoder.py
|
99 |
+
diffsynth/models/sdxl_controlnet.py
|
100 |
+
diffsynth/models/sdxl_ipadapter.py
|
101 |
+
diffsynth/models/sdxl_motion.py
|
102 |
+
diffsynth/models/sdxl_text_encoder.py
|
103 |
+
diffsynth/models/sdxl_unet.py
|
104 |
+
diffsynth/models/sdxl_vae_decoder.py
|
105 |
+
diffsynth/models/sdxl_vae_encoder.py
|
106 |
+
diffsynth/models/stepvideo_dit.py
|
107 |
+
diffsynth/models/stepvideo_text_encoder.py
|
108 |
+
diffsynth/models/stepvideo_vae.py
|
109 |
+
diffsynth/models/svd_image_encoder.py
|
110 |
+
diffsynth/models/svd_unet.py
|
111 |
+
diffsynth/models/svd_vae_decoder.py
|
112 |
+
diffsynth/models/svd_vae_encoder.py
|
113 |
+
diffsynth/models/tiler.py
|
114 |
+
diffsynth/models/utils.py
|
115 |
+
diffsynth/models/wan_video_dit.py
|
116 |
+
diffsynth/models/wan_video_image_encoder.py
|
117 |
+
diffsynth/models/wan_video_text_encoder.py
|
118 |
+
diffsynth/models/wan_video_vae.py
|
119 |
+
diffsynth/pipelines/__init__.py
|
120 |
+
diffsynth/pipelines/base.py
|
121 |
+
diffsynth/pipelines/cog_video.py
|
122 |
+
diffsynth/pipelines/dancer.py
|
123 |
+
diffsynth/pipelines/flux_image.py
|
124 |
+
diffsynth/pipelines/hunyuan_image.py
|
125 |
+
diffsynth/pipelines/hunyuan_video.py
|
126 |
+
diffsynth/pipelines/omnigen_image.py
|
127 |
+
diffsynth/pipelines/pipeline_runner.py
|
128 |
+
diffsynth/pipelines/sd3_image.py
|
129 |
+
diffsynth/pipelines/sd_image.py
|
130 |
+
diffsynth/pipelines/sd_video.py
|
131 |
+
diffsynth/pipelines/sdxl_image.py
|
132 |
+
diffsynth/pipelines/sdxl_video.py
|
133 |
+
diffsynth/pipelines/step_video.py
|
134 |
+
diffsynth/pipelines/svd_video.py
|
135 |
+
diffsynth/pipelines/wan_video.py
|
136 |
+
diffsynth/processors/FastBlend.py
|
137 |
+
diffsynth/processors/PILEditor.py
|
138 |
+
diffsynth/processors/RIFE.py
|
139 |
+
diffsynth/processors/__init__.py
|
140 |
+
diffsynth/processors/base.py
|
141 |
+
diffsynth/processors/sequencial_processor.py
|
142 |
+
diffsynth/prompters/__init__.py
|
143 |
+
diffsynth/prompters/base_prompter.py
|
144 |
+
diffsynth/prompters/cog_prompter.py
|
145 |
+
diffsynth/prompters/flux_prompter.py
|
146 |
+
diffsynth/prompters/hunyuan_dit_prompter.py
|
147 |
+
diffsynth/prompters/hunyuan_video_prompter.py
|
148 |
+
diffsynth/prompters/kolors_prompter.py
|
149 |
+
diffsynth/prompters/omnigen_prompter.py
|
150 |
+
diffsynth/prompters/omost.py
|
151 |
+
diffsynth/prompters/prompt_refiners.py
|
152 |
+
diffsynth/prompters/sd3_prompter.py
|
153 |
+
diffsynth/prompters/sd_prompter.py
|
154 |
+
diffsynth/prompters/sdxl_prompter.py
|
155 |
+
diffsynth/prompters/stepvideo_prompter.py
|
156 |
+
diffsynth/prompters/wan_prompter.py
|
157 |
+
diffsynth/schedulers/__init__.py
|
158 |
+
diffsynth/schedulers/continuous_ode.py
|
159 |
+
diffsynth/schedulers/ddim.py
|
160 |
+
diffsynth/schedulers/flow_match.py
|
161 |
+
diffsynth/tokenizer_configs/__init__.py
|
162 |
+
diffsynth/tokenizer_configs/cog/tokenizer/added_tokens.json
|
163 |
+
diffsynth/tokenizer_configs/cog/tokenizer/special_tokens_map.json
|
164 |
+
diffsynth/tokenizer_configs/cog/tokenizer/spiece.model
|
165 |
+
diffsynth/tokenizer_configs/cog/tokenizer/tokenizer_config.json
|
166 |
+
diffsynth/tokenizer_configs/flux/tokenizer_1/merges.txt
|
167 |
+
diffsynth/tokenizer_configs/flux/tokenizer_1/special_tokens_map.json
|
168 |
+
diffsynth/tokenizer_configs/flux/tokenizer_1/tokenizer_config.json
|
169 |
+
diffsynth/tokenizer_configs/flux/tokenizer_1/vocab.json
|
170 |
+
diffsynth/tokenizer_configs/flux/tokenizer_2/special_tokens_map.json
|
171 |
+
diffsynth/tokenizer_configs/flux/tokenizer_2/spiece.model
|
172 |
+
diffsynth/tokenizer_configs/flux/tokenizer_2/tokenizer.json
|
173 |
+
diffsynth/tokenizer_configs/flux/tokenizer_2/tokenizer_config.json
|
174 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer/special_tokens_map.json
|
175 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer/tokenizer_config.json
|
176 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer/vocab.txt
|
177 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer/vocab_org.txt
|
178 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer_t5/config.json
|
179 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer_t5/special_tokens_map.json
|
180 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer_t5/spiece.model
|
181 |
+
diffsynth/tokenizer_configs/hunyuan_dit/tokenizer_t5/tokenizer_config.json
|
182 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_1/merges.txt
|
183 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_1/special_tokens_map.json
|
184 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_1/tokenizer_config.json
|
185 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_1/vocab.json
|
186 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/special_tokens_map.json
|
187 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/tokenizer.json
|
188 |
+
diffsynth/tokenizer_configs/hunyuan_video/tokenizer_2/tokenizer_config.json
|
189 |
+
diffsynth/tokenizer_configs/kolors/tokenizer/tokenizer.model
|
190 |
+
diffsynth/tokenizer_configs/kolors/tokenizer/tokenizer_config.json
|
191 |
+
diffsynth/tokenizer_configs/kolors/tokenizer/vocab.txt
|
192 |
+
diffsynth/tokenizer_configs/stable_diffusion/tokenizer/merges.txt
|
193 |
+
diffsynth/tokenizer_configs/stable_diffusion/tokenizer/special_tokens_map.json
|
194 |
+
diffsynth/tokenizer_configs/stable_diffusion/tokenizer/tokenizer_config.json
|
195 |
+
diffsynth/tokenizer_configs/stable_diffusion/tokenizer/vocab.json
|
196 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_1/merges.txt
|
197 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_1/special_tokens_map.json
|
198 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_1/tokenizer_config.json
|
199 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_1/vocab.json
|
200 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_2/merges.txt
|
201 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_2/special_tokens_map.json
|
202 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_2/tokenizer_config.json
|
203 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_2/vocab.json
|
204 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_3/special_tokens_map.json
|
205 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_3/spiece.model
|
206 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_3/tokenizer.json
|
207 |
+
diffsynth/tokenizer_configs/stable_diffusion_3/tokenizer_3/tokenizer_config.json
|
208 |
+
diffsynth/tokenizer_configs/stable_diffusion_xl/tokenizer_2/merges.txt
|
209 |
+
diffsynth/tokenizer_configs/stable_diffusion_xl/tokenizer_2/special_tokens_map.json
|
210 |
+
diffsynth/tokenizer_configs/stable_diffusion_xl/tokenizer_2/tokenizer_config.json
|
211 |
+
diffsynth/tokenizer_configs/stable_diffusion_xl/tokenizer_2/vocab.json
|
212 |
+
diffsynth/trainers/__init__.py
|
213 |
+
diffsynth/trainers/text_to_image.py
|
214 |
+
diffsynth/vram_management/__init__.py
|
215 |
+
diffsynth/vram_management/layers.py
|
diffsynth.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
diffsynth.egg-info/requires.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
torchvision
|
3 |
+
cupy-cuda12x
|
4 |
+
transformers==4.46.2
|
5 |
+
controlnet-aux==0.0.7
|
6 |
+
imageio
|
7 |
+
imageio[ffmpeg]
|
8 |
+
safetensors
|
9 |
+
einops
|
10 |
+
sentencepiece
|
11 |
+
protobuf
|
12 |
+
modelscope
|
13 |
+
ftfy
|
diffsynth.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
diffsynth
|
diffsynth/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .data import *
|
2 |
+
from .models import *
|
3 |
+
from .prompters import *
|
4 |
+
from .schedulers import *
|
5 |
+
from .pipelines import *
|
6 |
+
from .controlnets import *
|
diffsynth/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (340 Bytes). View file
|
|
diffsynth/configs/__init__.py
ADDED
File without changes
|
diffsynth/configs/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (164 Bytes). View file
|
|
diffsynth/configs/__pycache__/model_config.cpython-311.pyc
ADDED
Binary file (27 kB). View file
|
|
diffsynth/configs/model_config.py
ADDED
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import Literal, TypeAlias
|
2 |
+
|
3 |
+
from ..models.sd_text_encoder import SDTextEncoder
|
4 |
+
from ..models.sd_unet import SDUNet
|
5 |
+
from ..models.sd_vae_encoder import SDVAEEncoder
|
6 |
+
from ..models.sd_vae_decoder import SDVAEDecoder
|
7 |
+
|
8 |
+
from ..models.sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
|
9 |
+
from ..models.sdxl_unet import SDXLUNet
|
10 |
+
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
|
11 |
+
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
|
12 |
+
|
13 |
+
from ..models.sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
|
14 |
+
from ..models.sd3_dit import SD3DiT
|
15 |
+
from ..models.sd3_vae_decoder import SD3VAEDecoder
|
16 |
+
from ..models.sd3_vae_encoder import SD3VAEEncoder
|
17 |
+
|
18 |
+
from ..models.sd_controlnet import SDControlNet
|
19 |
+
from ..models.sdxl_controlnet import SDXLControlNetUnion
|
20 |
+
|
21 |
+
from ..models.sd_motion import SDMotionModel
|
22 |
+
from ..models.sdxl_motion import SDXLMotionModel
|
23 |
+
|
24 |
+
from ..models.svd_image_encoder import SVDImageEncoder
|
25 |
+
from ..models.svd_unet import SVDUNet
|
26 |
+
from ..models.svd_vae_decoder import SVDVAEDecoder
|
27 |
+
from ..models.svd_vae_encoder import SVDVAEEncoder
|
28 |
+
|
29 |
+
from ..models.sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
|
30 |
+
from ..models.sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder
|
31 |
+
|
32 |
+
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
|
33 |
+
from ..models.hunyuan_dit import HunyuanDiT
|
34 |
+
|
35 |
+
from ..models.flux_dit import FluxDiT
|
36 |
+
from ..models.flux_text_encoder import FluxTextEncoder2
|
37 |
+
from ..models.flux_vae import FluxVAEEncoder, FluxVAEDecoder
|
38 |
+
from ..models.flux_controlnet import FluxControlNet
|
39 |
+
from ..models.flux_ipadapter import FluxIpAdapter
|
40 |
+
|
41 |
+
from ..models.cog_vae import CogVAEEncoder, CogVAEDecoder
|
42 |
+
from ..models.cog_dit import CogDiT
|
43 |
+
|
44 |
+
from ..models.omnigen import OmniGenTransformer
|
45 |
+
|
46 |
+
from ..models.hunyuan_video_vae_decoder import HunyuanVideoVAEDecoder
|
47 |
+
from ..models.hunyuan_video_vae_encoder import HunyuanVideoVAEEncoder
|
48 |
+
|
49 |
+
from ..extensions.RIFE import IFNet
|
50 |
+
from ..extensions.ESRGAN import RRDBNet
|
51 |
+
|
52 |
+
from ..models.hunyuan_video_dit import HunyuanVideoDiT
|
53 |
+
|
54 |
+
from ..models.stepvideo_vae import StepVideoVAE
|
55 |
+
from ..models.stepvideo_dit import StepVideoModel
|
56 |
+
|
57 |
+
from ..models.wan_video_dit import WanModel
|
58 |
+
from ..models.wan_video_text_encoder import WanTextEncoder
|
59 |
+
from ..models.wan_video_image_encoder import WanImageEncoder
|
60 |
+
from ..models.wan_video_vae import WanVideoVAE
|
61 |
+
|
62 |
+
|
63 |
+
model_loader_configs = [
|
64 |
+
# These configs are provided for detecting model type automatically.
|
65 |
+
# The format is (state_dict_keys_hash, state_dict_keys_hash_with_shape, model_names, model_classes, model_resource)
|
66 |
+
(None, "091b0e30e77c76626b3ba62acdf95343", ["sd_controlnet"], [SDControlNet], "civitai"),
|
67 |
+
(None, "4a6c8306a27d916dea81263c8c88f450", ["hunyuan_dit_clip_text_encoder"], [HunyuanDiTCLIPTextEncoder], "civitai"),
|
68 |
+
(None, "f4aec400fe394297961218c768004521", ["hunyuan_dit"], [HunyuanDiT], "civitai"),
|
69 |
+
(None, "9e6e58043a5a2e332803ed42f6ee7181", ["hunyuan_dit_t5_text_encoder"], [HunyuanDiTT5TextEncoder], "civitai"),
|
70 |
+
(None, "13115dd45a6e1c39860f91ab073b8a78", ["sdxl_vae_encoder", "sdxl_vae_decoder"], [SDXLVAEEncoder, SDXLVAEDecoder], "diffusers"),
|
71 |
+
(None, "d78aa6797382a6d455362358a3295ea9", ["sd_ipadapter_clip_image_encoder"], [IpAdapterCLIPImageEmbedder], "diffusers"),
|
72 |
+
(None, "e291636cc15e803186b47404262ef812", ["sd_ipadapter"], [SDIpAdapter], "civitai"),
|
73 |
+
(None, "399c81f2f8de8d1843d0127a00f3c224", ["sdxl_ipadapter_clip_image_encoder"], [IpAdapterXLCLIPImageEmbedder], "diffusers"),
|
74 |
+
(None, "a64eac9aa0db4b9602213bc0131281c7", ["sdxl_ipadapter"], [SDXLIpAdapter], "civitai"),
|
75 |
+
(None, "52817e4fdd89df154f02749ca6f692ac", ["sdxl_unet"], [SDXLUNet], "diffusers"),
|
76 |
+
(None, "03343c606f16d834d6411d0902b53636", ["sd_text_encoder", "sd_unet", "sd_vae_decoder", "sd_vae_encoder"], [SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder], "civitai"),
|
77 |
+
(None, "d4ba77a7ece070679b4a987f58f201e9", ["sd_text_encoder"], [SDTextEncoder], "civitai"),
|
78 |
+
(None, "d0c89e55c5a57cf3981def0cb1c9e65a", ["sd_vae_decoder", "sd_vae_encoder"], [SDVAEDecoder, SDVAEEncoder], "civitai"),
|
79 |
+
(None, "3926bf373b39a67eeafd7901478a47a7", ["sd_unet"], [SDUNet], "civitai"),
|
80 |
+
(None, "1e0c39ec176b9007c05f76d52b554a4d", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
81 |
+
(None, "d9e0290829ba8d98e28e1a2b1407db4a", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_text_encoder_3", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
82 |
+
(None, "5072d0b24e406b49507abe861cf97691", ["sd3_text_encoder_3"], [SD3TextEncoder3], "civitai"),
|
83 |
+
(None, "4cf64a799d04260df438c6f33c9a047e", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"),
|
84 |
+
(None, "d9b008a867c498ab12ad24042eff8e3f", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"), # SDXL-Turbo
|
85 |
+
(None, "025bb7452e531a3853d951d77c63f032", ["sdxl_text_encoder", "sdxl_text_encoder_2"], [SDXLTextEncoder, SDXLTextEncoder2], "civitai"),
|
86 |
+
(None, "298997b403a4245c04102c9f36aac348", ["sdxl_unet"], [SDXLUNet], "civitai"),
|
87 |
+
(None, "2a07abce74b4bdc696b76254ab474da6", ["svd_image_encoder", "svd_unet", "svd_vae_decoder", "svd_vae_encoder"], [SVDImageEncoder, SVDUNet, SVDVAEDecoder, SVDVAEEncoder], "civitai"),
|
88 |
+
(None, "c96a285a6888465f87de22a984d049fb", ["sd_motion_modules"], [SDMotionModel], "civitai"),
|
89 |
+
(None, "72907b92caed19bdb2adb89aa4063fe2", ["sdxl_motion_modules"], [SDXLMotionModel], "civitai"),
|
90 |
+
(None, "31d2d9614fba60511fc9bf2604aa01f7", ["sdxl_controlnet"], [SDXLControlNetUnion], "diffusers"),
|
91 |
+
(None, "94eefa3dac9cec93cb1ebaf1747d7b78", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"),
|
92 |
+
(None, "1aafa3cc91716fb6b300cc1cd51b85a3", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "diffusers"),
|
93 |
+
(None, "21ea55f476dfc4fd135587abb59dfe5d", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "civitai"),
|
94 |
+
(None, "a29710fea6dddb0314663ee823598e50", ["flux_dit"], [FluxDiT], "civitai"),
|
95 |
+
(None, "57b02550baab820169365b3ee3afa2c9", ["flux_dit"], [FluxDiT], "civitai"),
|
96 |
+
(None, "3394f306c4cbf04334b712bf5aaed95f", ["flux_dit"], [FluxDiT], "civitai"),
|
97 |
+
(None, "023f054d918a84ccf503481fd1e3379e", ["flux_dit"], [FluxDiT], "civitai"),
|
98 |
+
(None, "605c56eab23e9e2af863ad8f0813a25d", ["flux_dit"], [FluxDiT], "diffusers"),
|
99 |
+
(None, "280189ee084bca10f70907bf6ce1649d", ["cog_vae_encoder", "cog_vae_decoder"], [CogVAEEncoder, CogVAEDecoder], "diffusers"),
|
100 |
+
(None, "9b9313d104ac4df27991352fec013fd4", ["rife"], [IFNet], "civitai"),
|
101 |
+
(None, "6b7116078c4170bfbeaedc8fe71f6649", ["esrgan"], [RRDBNet], "civitai"),
|
102 |
+
(None, "61cbcbc7ac11f169c5949223efa960d1", ["omnigen_transformer"], [OmniGenTransformer], "diffusers"),
|
103 |
+
(None, "78d18b9101345ff695f312e7e62538c0", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
104 |
+
(None, "b001c89139b5f053c715fe772362dd2a", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
105 |
+
(None, "52357cb26250681367488a8954c271e8", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
106 |
+
(None, "0cfd1740758423a2a854d67c136d1e8c", ["flux_controlnet"], [FluxControlNet], "diffusers"),
|
107 |
+
(None, "4daaa66cc656a8fe369908693dad0a35", ["flux_ipadapter"], [FluxIpAdapter], "diffusers"),
|
108 |
+
(None, "51aed3d27d482fceb5e0739b03060e8f", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
109 |
+
(None, "98cc34ccc5b54ae0e56bdea8688dcd5a", ["sd3_text_encoder_2"], [SD3TextEncoder2], "civitai"),
|
110 |
+
(None, "77ff18050dbc23f50382e45d51a779fe", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"),
|
111 |
+
(None, "5da81baee73198a7c19e6d2fe8b5148e", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"),
|
112 |
+
(None, "aeb82dce778a03dcb4d726cb03f3c43f", ["hunyuan_video_vae_decoder", "hunyuan_video_vae_encoder"], [HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder], "diffusers"),
|
113 |
+
(None, "b9588f02e78f5ccafc9d7c0294e46308", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"),
|
114 |
+
(None, "84ef4bd4757f60e906b54aa6a7815dc6", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"),
|
115 |
+
(None, "68beaf8429b7c11aa8ca05b1bd0058bd", ["stepvideo_vae"], [StepVideoVAE], "civitai"),
|
116 |
+
(None, "5c0216a2132b082c10cb7a0e0377e681", ["stepvideo_dit"], [StepVideoModel], "civitai"),
|
117 |
+
(None, "9269f8db9040a9d860eaca435be61814", ["wan_video_dit"], [WanModel], "civitai"),
|
118 |
+
(None, "aafcfd9672c3a2456dc46e1cb6e52c70", ["wan_video_dit"], [WanModel], "civitai"),
|
119 |
+
(None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"),
|
120 |
+
(None, "cb104773c6c2cb6df4f9529ad5c60d0b", ["wan_video_dit"], [WanModel], "diffusers"),
|
121 |
+
(None, "9c8818c2cbea55eca56c7b447df170da", ["wan_video_text_encoder"], [WanTextEncoder], "civitai"),
|
122 |
+
(None, "5941c53e207d62f20f9025686193c40b", ["wan_video_image_encoder"], [WanImageEncoder], "civitai"),
|
123 |
+
(None, "1378ea763357eea97acdef78e65d6d96", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
124 |
+
(None, "ccc42284ea13e1ad04693284c7a09be6", ["wan_video_vae"], [WanVideoVAE], "civitai"),
|
125 |
+
]
|
126 |
+
huggingface_model_loader_configs = [
|
127 |
+
# These configs are provided for detecting model type automatically.
|
128 |
+
# The format is (architecture_in_huggingface_config, huggingface_lib, model_name, redirected_architecture)
|
129 |
+
("ChatGLMModel", "diffsynth.models.kolors_text_encoder", "kolors_text_encoder", None),
|
130 |
+
("MarianMTModel", "transformers.models.marian.modeling_marian", "translator", None),
|
131 |
+
("BloomForCausalLM", "transformers.models.bloom.modeling_bloom", "beautiful_prompt", None),
|
132 |
+
("Qwen2ForCausalLM", "transformers.models.qwen2.modeling_qwen2", "qwen_prompt", None),
|
133 |
+
# ("LlamaForCausalLM", "transformers.models.llama.modeling_llama", "omost_prompt", None),
|
134 |
+
("T5EncoderModel", "diffsynth.models.flux_text_encoder", "flux_text_encoder_2", "FluxTextEncoder2"),
|
135 |
+
("CogVideoXTransformer3DModel", "diffsynth.models.cog_dit", "cog_dit", "CogDiT"),
|
136 |
+
("SiglipModel", "transformers.models.siglip.modeling_siglip", "siglip_vision_model", "SiglipVisionModel"),
|
137 |
+
("LlamaForCausalLM", "diffsynth.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoLLMEncoder"),
|
138 |
+
("Step1Model", "diffsynth.models.stepvideo_text_encoder", "stepvideo_text_encoder_2", "STEP1TextEncoder"),
|
139 |
+
]
|
140 |
+
patch_model_loader_configs = [
|
141 |
+
# These configs are provided for detecting model type automatically.
|
142 |
+
# The format is (state_dict_keys_hash_with_shape, model_name, model_class, extra_kwargs)
|
143 |
+
("9a4ab6869ac9b7d6e31f9854e397c867", ["svd_unet"], [SVDUNet], {"add_positional_conv": 128}),
|
144 |
+
]
|
145 |
+
|
146 |
+
preset_models_on_huggingface = {
|
147 |
+
"HunyuanDiT": [
|
148 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
|
149 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
|
150 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
|
151 |
+
("Tencent-Hunyuan/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
|
152 |
+
],
|
153 |
+
"stable-video-diffusion-img2vid-xt": [
|
154 |
+
("stabilityai/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
|
155 |
+
],
|
156 |
+
"ExVideo-SVD-128f-v1": [
|
157 |
+
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
|
158 |
+
],
|
159 |
+
# Stable Diffusion
|
160 |
+
"StableDiffusion_v15": [
|
161 |
+
("benjamin-paine/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"),
|
162 |
+
],
|
163 |
+
"DreamShaper_8": [
|
164 |
+
("Yntec/Dreamshaper8", "dreamshaper_8.safetensors", "models/stable_diffusion"),
|
165 |
+
],
|
166 |
+
# Textual Inversion
|
167 |
+
"TextualInversion_VeryBadImageNegative_v1.3": [
|
168 |
+
("gemasai/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"),
|
169 |
+
],
|
170 |
+
# Stable Diffusion XL
|
171 |
+
"StableDiffusionXL_v1": [
|
172 |
+
("stabilityai/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"),
|
173 |
+
],
|
174 |
+
"BluePencilXL_v200": [
|
175 |
+
("frankjoshua/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"),
|
176 |
+
],
|
177 |
+
"StableDiffusionXL_Turbo": [
|
178 |
+
("stabilityai/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"),
|
179 |
+
],
|
180 |
+
# Stable Diffusion 3
|
181 |
+
"StableDiffusion3": [
|
182 |
+
("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"),
|
183 |
+
],
|
184 |
+
"StableDiffusion3_without_T5": [
|
185 |
+
("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"),
|
186 |
+
],
|
187 |
+
# ControlNet
|
188 |
+
"ControlNet_v11f1p_sd15_depth": [
|
189 |
+
("lllyasviel/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"),
|
190 |
+
("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
191 |
+
],
|
192 |
+
"ControlNet_v11p_sd15_softedge": [
|
193 |
+
("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"),
|
194 |
+
("lllyasviel/Annotators", "ControlNetHED.pth", "models/Annotators")
|
195 |
+
],
|
196 |
+
"ControlNet_v11f1e_sd15_tile": [
|
197 |
+
("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet")
|
198 |
+
],
|
199 |
+
"ControlNet_v11p_sd15_lineart": [
|
200 |
+
("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"),
|
201 |
+
("lllyasviel/Annotators", "sk_model.pth", "models/Annotators"),
|
202 |
+
("lllyasviel/Annotators", "sk_model2.pth", "models/Annotators")
|
203 |
+
],
|
204 |
+
"ControlNet_union_sdxl_promax": [
|
205 |
+
("xinsir/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"),
|
206 |
+
("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
207 |
+
],
|
208 |
+
# AnimateDiff
|
209 |
+
"AnimateDiff_v2": [
|
210 |
+
("guoyww/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"),
|
211 |
+
],
|
212 |
+
"AnimateDiff_xl_beta": [
|
213 |
+
("guoyww/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"),
|
214 |
+
],
|
215 |
+
|
216 |
+
# Qwen Prompt
|
217 |
+
"QwenPrompt": [
|
218 |
+
("Qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
219 |
+
("Qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
220 |
+
("Qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
221 |
+
("Qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
222 |
+
("Qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
223 |
+
("Qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
224 |
+
("Qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
225 |
+
("Qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
226 |
+
],
|
227 |
+
# Beautiful Prompt
|
228 |
+
"BeautifulPrompt": [
|
229 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
230 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
231 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
232 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
233 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
234 |
+
("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
235 |
+
],
|
236 |
+
# Omost prompt
|
237 |
+
"OmostPrompt":[
|
238 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
239 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
240 |
+
("lllyasviel/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
241 |
+
("lllyasviel/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
242 |
+
("lllyasviel/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
243 |
+
("lllyasviel/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
244 |
+
("lllyasviel/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
245 |
+
("lllyasviel/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
246 |
+
],
|
247 |
+
# Translator
|
248 |
+
"opus-mt-zh-en": [
|
249 |
+
("Helsinki-NLP/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"),
|
250 |
+
("Helsinki-NLP/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"),
|
251 |
+
("Helsinki-NLP/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"),
|
252 |
+
("Helsinki-NLP/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"),
|
253 |
+
("Helsinki-NLP/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"),
|
254 |
+
("Helsinki-NLP/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"),
|
255 |
+
("Helsinki-NLP/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"),
|
256 |
+
("Helsinki-NLP/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"),
|
257 |
+
],
|
258 |
+
# IP-Adapter
|
259 |
+
"IP-Adapter-SD": [
|
260 |
+
("h94/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"),
|
261 |
+
("h94/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"),
|
262 |
+
],
|
263 |
+
"IP-Adapter-SDXL": [
|
264 |
+
("h94/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"),
|
265 |
+
("h94/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"),
|
266 |
+
],
|
267 |
+
"SDXL-vae-fp16-fix": [
|
268 |
+
("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix")
|
269 |
+
],
|
270 |
+
# Kolors
|
271 |
+
"Kolors": [
|
272 |
+
("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"),
|
273 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"),
|
274 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
275 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
276 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
277 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
278 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
279 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
280 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
281 |
+
("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"),
|
282 |
+
("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"),
|
283 |
+
],
|
284 |
+
# FLUX
|
285 |
+
"FLUX.1-dev": [
|
286 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
287 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
288 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
289 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
290 |
+
("black-forest-labs/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
291 |
+
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
292 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"),
|
293 |
+
],
|
294 |
+
"InstantX/FLUX.1-dev-IP-Adapter": {
|
295 |
+
"file_list": [
|
296 |
+
("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"),
|
297 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
298 |
+
("google/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
299 |
+
],
|
300 |
+
"load_path": [
|
301 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin",
|
302 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder",
|
303 |
+
],
|
304 |
+
},
|
305 |
+
# RIFE
|
306 |
+
"RIFE": [
|
307 |
+
("AlexWortega/RIFE", "flownet.pkl", "models/RIFE"),
|
308 |
+
],
|
309 |
+
# CogVideo
|
310 |
+
"CogVideoX-5B": [
|
311 |
+
("THUDM/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
312 |
+
("THUDM/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
313 |
+
("THUDM/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
314 |
+
("THUDM/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
315 |
+
("THUDM/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
316 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
317 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
318 |
+
("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
319 |
+
("THUDM/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"),
|
320 |
+
],
|
321 |
+
# Stable Diffusion 3.5
|
322 |
+
"StableDiffusion3.5-large": [
|
323 |
+
("stabilityai/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"),
|
324 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
325 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
326 |
+
("stabilityai/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
327 |
+
],
|
328 |
+
}
|
329 |
+
preset_models_on_modelscope = {
|
330 |
+
# Hunyuan DiT
|
331 |
+
"HunyuanDiT": [
|
332 |
+
("modelscope/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"),
|
333 |
+
("modelscope/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"),
|
334 |
+
("modelscope/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"),
|
335 |
+
("modelscope/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"),
|
336 |
+
],
|
337 |
+
# Stable Video Diffusion
|
338 |
+
"stable-video-diffusion-img2vid-xt": [
|
339 |
+
("AI-ModelScope/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"),
|
340 |
+
],
|
341 |
+
# ExVideo
|
342 |
+
"ExVideo-SVD-128f-v1": [
|
343 |
+
("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"),
|
344 |
+
],
|
345 |
+
"ExVideo-CogVideoX-LoRA-129f-v1": [
|
346 |
+
("ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1", "ExVideo-CogVideoX-LoRA-129f-v1.safetensors", "models/lora"),
|
347 |
+
],
|
348 |
+
# Stable Diffusion
|
349 |
+
"StableDiffusion_v15": [
|
350 |
+
("AI-ModelScope/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"),
|
351 |
+
],
|
352 |
+
"DreamShaper_8": [
|
353 |
+
("sd_lora/dreamshaper_8", "dreamshaper_8.safetensors", "models/stable_diffusion"),
|
354 |
+
],
|
355 |
+
"AingDiffusion_v12": [
|
356 |
+
("sd_lora/aingdiffusion_v12", "aingdiffusion_v12.safetensors", "models/stable_diffusion"),
|
357 |
+
],
|
358 |
+
"Flat2DAnimerge_v45Sharp": [
|
359 |
+
("sd_lora/Flat-2D-Animerge", "flat2DAnimerge_v45Sharp.safetensors", "models/stable_diffusion"),
|
360 |
+
],
|
361 |
+
# Textual Inversion
|
362 |
+
"TextualInversion_VeryBadImageNegative_v1.3": [
|
363 |
+
("sd_lora/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"),
|
364 |
+
],
|
365 |
+
# Stable Diffusion XL
|
366 |
+
"StableDiffusionXL_v1": [
|
367 |
+
("AI-ModelScope/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"),
|
368 |
+
],
|
369 |
+
"BluePencilXL_v200": [
|
370 |
+
("sd_lora/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"),
|
371 |
+
],
|
372 |
+
"StableDiffusionXL_Turbo": [
|
373 |
+
("AI-ModelScope/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"),
|
374 |
+
],
|
375 |
+
"SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0": [
|
376 |
+
("sd_lora/zyd232_ChineseInkStyle_SDXL_v1_0", "zyd232_ChineseInkStyle_SDXL_v1_0.safetensors", "models/lora"),
|
377 |
+
],
|
378 |
+
# Stable Diffusion 3
|
379 |
+
"StableDiffusion3": [
|
380 |
+
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"),
|
381 |
+
],
|
382 |
+
"StableDiffusion3_without_T5": [
|
383 |
+
("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"),
|
384 |
+
],
|
385 |
+
# ControlNet
|
386 |
+
"ControlNet_v11f1p_sd15_depth": [
|
387 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"),
|
388 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
389 |
+
],
|
390 |
+
"ControlNet_v11p_sd15_softedge": [
|
391 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"),
|
392 |
+
("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators")
|
393 |
+
],
|
394 |
+
"ControlNet_v11f1e_sd15_tile": [
|
395 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet")
|
396 |
+
],
|
397 |
+
"ControlNet_v11p_sd15_lineart": [
|
398 |
+
("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"),
|
399 |
+
("sd_lora/Annotators", "sk_model.pth", "models/Annotators"),
|
400 |
+
("sd_lora/Annotators", "sk_model2.pth", "models/Annotators")
|
401 |
+
],
|
402 |
+
"ControlNet_union_sdxl_promax": [
|
403 |
+
("AI-ModelScope/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"),
|
404 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators")
|
405 |
+
],
|
406 |
+
"Annotators:Depth": [
|
407 |
+
("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators"),
|
408 |
+
],
|
409 |
+
"Annotators:Softedge": [
|
410 |
+
("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators"),
|
411 |
+
],
|
412 |
+
"Annotators:Lineart": [
|
413 |
+
("sd_lora/Annotators", "sk_model.pth", "models/Annotators"),
|
414 |
+
("sd_lora/Annotators", "sk_model2.pth", "models/Annotators"),
|
415 |
+
],
|
416 |
+
"Annotators:Normal": [
|
417 |
+
("sd_lora/Annotators", "scannet.pt", "models/Annotators"),
|
418 |
+
],
|
419 |
+
"Annotators:Openpose": [
|
420 |
+
("sd_lora/Annotators", "body_pose_model.pth", "models/Annotators"),
|
421 |
+
("sd_lora/Annotators", "facenet.pth", "models/Annotators"),
|
422 |
+
("sd_lora/Annotators", "hand_pose_model.pth", "models/Annotators"),
|
423 |
+
],
|
424 |
+
# AnimateDiff
|
425 |
+
"AnimateDiff_v2": [
|
426 |
+
("Shanghai_AI_Laboratory/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"),
|
427 |
+
],
|
428 |
+
"AnimateDiff_xl_beta": [
|
429 |
+
("Shanghai_AI_Laboratory/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"),
|
430 |
+
],
|
431 |
+
# RIFE
|
432 |
+
"RIFE": [
|
433 |
+
("Damo_XR_Lab/cv_rife_video-frame-interpolation", "flownet.pkl", "models/RIFE"),
|
434 |
+
],
|
435 |
+
# Qwen Prompt
|
436 |
+
"QwenPrompt": {
|
437 |
+
"file_list": [
|
438 |
+
("qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
439 |
+
("qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
440 |
+
("qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
441 |
+
("qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
442 |
+
("qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
443 |
+
("qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
444 |
+
("qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
445 |
+
("qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"),
|
446 |
+
],
|
447 |
+
"load_path": [
|
448 |
+
"models/QwenPrompt/qwen2-1.5b-instruct",
|
449 |
+
],
|
450 |
+
},
|
451 |
+
# Beautiful Prompt
|
452 |
+
"BeautifulPrompt": {
|
453 |
+
"file_list": [
|
454 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
455 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
456 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
457 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
458 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
459 |
+
("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"),
|
460 |
+
],
|
461 |
+
"load_path": [
|
462 |
+
"models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd",
|
463 |
+
],
|
464 |
+
},
|
465 |
+
# Omost prompt
|
466 |
+
"OmostPrompt": {
|
467 |
+
"file_list": [
|
468 |
+
("Omost/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
469 |
+
("Omost/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
470 |
+
("Omost/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
471 |
+
("Omost/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
472 |
+
("Omost/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
473 |
+
("Omost/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
474 |
+
("Omost/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
475 |
+
("Omost/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"),
|
476 |
+
],
|
477 |
+
"load_path": [
|
478 |
+
"models/OmostPrompt/omost-llama-3-8b-4bits",
|
479 |
+
],
|
480 |
+
},
|
481 |
+
# Translator
|
482 |
+
"opus-mt-zh-en": {
|
483 |
+
"file_list": [
|
484 |
+
("moxying/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"),
|
485 |
+
("moxying/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"),
|
486 |
+
("moxying/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"),
|
487 |
+
("moxying/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"),
|
488 |
+
("moxying/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"),
|
489 |
+
("moxying/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"),
|
490 |
+
("moxying/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"),
|
491 |
+
("moxying/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"),
|
492 |
+
],
|
493 |
+
"load_path": [
|
494 |
+
"models/translator/opus-mt-zh-en",
|
495 |
+
],
|
496 |
+
},
|
497 |
+
# IP-Adapter
|
498 |
+
"IP-Adapter-SD": [
|
499 |
+
("AI-ModelScope/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"),
|
500 |
+
("AI-ModelScope/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"),
|
501 |
+
],
|
502 |
+
"IP-Adapter-SDXL": [
|
503 |
+
("AI-ModelScope/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"),
|
504 |
+
("AI-ModelScope/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"),
|
505 |
+
],
|
506 |
+
# Kolors
|
507 |
+
"Kolors": {
|
508 |
+
"file_list": [
|
509 |
+
("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"),
|
510 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"),
|
511 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
512 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
513 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
514 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
515 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
516 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
517 |
+
("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"),
|
518 |
+
("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"),
|
519 |
+
("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"),
|
520 |
+
],
|
521 |
+
"load_path": [
|
522 |
+
"models/kolors/Kolors/text_encoder",
|
523 |
+
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
|
524 |
+
"models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors",
|
525 |
+
],
|
526 |
+
},
|
527 |
+
"SDXL-vae-fp16-fix": [
|
528 |
+
("AI-ModelScope/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix")
|
529 |
+
],
|
530 |
+
# FLUX
|
531 |
+
"FLUX.1-dev": {
|
532 |
+
"file_list": [
|
533 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
534 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
535 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
536 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
537 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
538 |
+
("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
539 |
+
("AI-ModelScope/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"),
|
540 |
+
],
|
541 |
+
"load_path": [
|
542 |
+
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
|
543 |
+
"models/FLUX/FLUX.1-dev/text_encoder_2",
|
544 |
+
"models/FLUX/FLUX.1-dev/ae.safetensors",
|
545 |
+
"models/FLUX/FLUX.1-dev/flux1-dev.safetensors"
|
546 |
+
],
|
547 |
+
},
|
548 |
+
"FLUX.1-schnell": {
|
549 |
+
"file_list": [
|
550 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"),
|
551 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
552 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
553 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
554 |
+
("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"),
|
555 |
+
("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"),
|
556 |
+
("AI-ModelScope/FLUX.1-schnell", "flux1-schnell.safetensors", "models/FLUX/FLUX.1-schnell"),
|
557 |
+
],
|
558 |
+
"load_path": [
|
559 |
+
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
|
560 |
+
"models/FLUX/FLUX.1-dev/text_encoder_2",
|
561 |
+
"models/FLUX/FLUX.1-dev/ae.safetensors",
|
562 |
+
"models/FLUX/FLUX.1-schnell/flux1-schnell.safetensors"
|
563 |
+
],
|
564 |
+
},
|
565 |
+
"InstantX/FLUX.1-dev-Controlnet-Union-alpha": [
|
566 |
+
("InstantX/FLUX.1-dev-Controlnet-Union-alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha"),
|
567 |
+
],
|
568 |
+
"jasperai/Flux.1-dev-Controlnet-Depth": [
|
569 |
+
("jasperai/Flux.1-dev-Controlnet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Depth"),
|
570 |
+
],
|
571 |
+
"jasperai/Flux.1-dev-Controlnet-Surface-Normals": [
|
572 |
+
("jasperai/Flux.1-dev-Controlnet-Surface-Normals", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Surface-Normals"),
|
573 |
+
],
|
574 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler": [
|
575 |
+
("jasperai/Flux.1-dev-Controlnet-Upscaler", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler"),
|
576 |
+
],
|
577 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha": [
|
578 |
+
("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha"),
|
579 |
+
],
|
580 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta": [
|
581 |
+
("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta"),
|
582 |
+
],
|
583 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Depth": [
|
584 |
+
("Shakker-Labs/FLUX.1-dev-ControlNet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Depth"),
|
585 |
+
],
|
586 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro": [
|
587 |
+
("Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"),
|
588 |
+
],
|
589 |
+
"InstantX/FLUX.1-dev-IP-Adapter": {
|
590 |
+
"file_list": [
|
591 |
+
("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"),
|
592 |
+
("AI-ModelScope/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
593 |
+
("AI-ModelScope/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"),
|
594 |
+
],
|
595 |
+
"load_path": [
|
596 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin",
|
597 |
+
"models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder",
|
598 |
+
],
|
599 |
+
},
|
600 |
+
# ESRGAN
|
601 |
+
"ESRGAN_x4": [
|
602 |
+
("AI-ModelScope/Real-ESRGAN", "RealESRGAN_x4.pth", "models/ESRGAN"),
|
603 |
+
],
|
604 |
+
# RIFE
|
605 |
+
"RIFE": [
|
606 |
+
("AI-ModelScope/RIFE", "flownet.pkl", "models/RIFE"),
|
607 |
+
],
|
608 |
+
# Omnigen
|
609 |
+
"OmniGen-v1": {
|
610 |
+
"file_list": [
|
611 |
+
("BAAI/OmniGen-v1", "vae/diffusion_pytorch_model.safetensors", "models/OmniGen/OmniGen-v1/vae"),
|
612 |
+
("BAAI/OmniGen-v1", "model.safetensors", "models/OmniGen/OmniGen-v1"),
|
613 |
+
("BAAI/OmniGen-v1", "config.json", "models/OmniGen/OmniGen-v1"),
|
614 |
+
("BAAI/OmniGen-v1", "special_tokens_map.json", "models/OmniGen/OmniGen-v1"),
|
615 |
+
("BAAI/OmniGen-v1", "tokenizer_config.json", "models/OmniGen/OmniGen-v1"),
|
616 |
+
("BAAI/OmniGen-v1", "tokenizer.json", "models/OmniGen/OmniGen-v1"),
|
617 |
+
],
|
618 |
+
"load_path": [
|
619 |
+
"models/OmniGen/OmniGen-v1/vae/diffusion_pytorch_model.safetensors",
|
620 |
+
"models/OmniGen/OmniGen-v1/model.safetensors",
|
621 |
+
]
|
622 |
+
},
|
623 |
+
# CogVideo
|
624 |
+
"CogVideoX-5B": {
|
625 |
+
"file_list": [
|
626 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
627 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
628 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
629 |
+
("ZhipuAI/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"),
|
630 |
+
("ZhipuAI/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
631 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"),
|
632 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
633 |
+
("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"),
|
634 |
+
("ZhipuAI/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"),
|
635 |
+
],
|
636 |
+
"load_path": [
|
637 |
+
"models/CogVideo/CogVideoX-5b/text_encoder",
|
638 |
+
"models/CogVideo/CogVideoX-5b/transformer",
|
639 |
+
"models/CogVideo/CogVideoX-5b/vae/diffusion_pytorch_model.safetensors",
|
640 |
+
],
|
641 |
+
},
|
642 |
+
# Stable Diffusion 3.5
|
643 |
+
"StableDiffusion3.5-large": [
|
644 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"),
|
645 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
646 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
647 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
648 |
+
],
|
649 |
+
"StableDiffusion3.5-medium": [
|
650 |
+
("AI-ModelScope/stable-diffusion-3.5-medium", "sd3.5_medium.safetensors", "models/stable_diffusion_3"),
|
651 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
652 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
653 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
654 |
+
],
|
655 |
+
"StableDiffusion3.5-large-turbo": [
|
656 |
+
("AI-ModelScope/stable-diffusion-3.5-large-turbo", "sd3.5_large_turbo.safetensors", "models/stable_diffusion_3"),
|
657 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"),
|
658 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"),
|
659 |
+
("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"),
|
660 |
+
],
|
661 |
+
"HunyuanVideo":{
|
662 |
+
"file_list": [
|
663 |
+
("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"),
|
664 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
665 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
666 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
667 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
668 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"),
|
669 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"),
|
670 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"),
|
671 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", "models/HunyuanVideo/transformers")
|
672 |
+
],
|
673 |
+
"load_path": [
|
674 |
+
"models/HunyuanVideo/text_encoder/model.safetensors",
|
675 |
+
"models/HunyuanVideo/text_encoder_2",
|
676 |
+
"models/HunyuanVideo/vae/pytorch_model.pt",
|
677 |
+
"models/HunyuanVideo/transformers/mp_rank_00_model_states.pt"
|
678 |
+
],
|
679 |
+
},
|
680 |
+
"HunyuanVideo-fp8":{
|
681 |
+
"file_list": [
|
682 |
+
("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"),
|
683 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
684 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
685 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
686 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"),
|
687 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"),
|
688 |
+
("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"),
|
689 |
+
("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"),
|
690 |
+
("DiffSynth-Studio/HunyuanVideo-safetensors", "model.fp8.safetensors", "models/HunyuanVideo/transformers")
|
691 |
+
],
|
692 |
+
"load_path": [
|
693 |
+
"models/HunyuanVideo/text_encoder/model.safetensors",
|
694 |
+
"models/HunyuanVideo/text_encoder_2",
|
695 |
+
"models/HunyuanVideo/vae/pytorch_model.pt",
|
696 |
+
"models/HunyuanVideo/transformers/model.fp8.safetensors"
|
697 |
+
],
|
698 |
+
},
|
699 |
+
}
|
700 |
+
Preset_model_id: TypeAlias = Literal[
|
701 |
+
"HunyuanDiT",
|
702 |
+
"stable-video-diffusion-img2vid-xt",
|
703 |
+
"ExVideo-SVD-128f-v1",
|
704 |
+
"ExVideo-CogVideoX-LoRA-129f-v1",
|
705 |
+
"StableDiffusion_v15",
|
706 |
+
"DreamShaper_8",
|
707 |
+
"AingDiffusion_v12",
|
708 |
+
"Flat2DAnimerge_v45Sharp",
|
709 |
+
"TextualInversion_VeryBadImageNegative_v1.3",
|
710 |
+
"StableDiffusionXL_v1",
|
711 |
+
"BluePencilXL_v200",
|
712 |
+
"StableDiffusionXL_Turbo",
|
713 |
+
"ControlNet_v11f1p_sd15_depth",
|
714 |
+
"ControlNet_v11p_sd15_softedge",
|
715 |
+
"ControlNet_v11f1e_sd15_tile",
|
716 |
+
"ControlNet_v11p_sd15_lineart",
|
717 |
+
"AnimateDiff_v2",
|
718 |
+
"AnimateDiff_xl_beta",
|
719 |
+
"RIFE",
|
720 |
+
"BeautifulPrompt",
|
721 |
+
"opus-mt-zh-en",
|
722 |
+
"IP-Adapter-SD",
|
723 |
+
"IP-Adapter-SDXL",
|
724 |
+
"StableDiffusion3",
|
725 |
+
"StableDiffusion3_without_T5",
|
726 |
+
"Kolors",
|
727 |
+
"SDXL-vae-fp16-fix",
|
728 |
+
"ControlNet_union_sdxl_promax",
|
729 |
+
"FLUX.1-dev",
|
730 |
+
"FLUX.1-schnell",
|
731 |
+
"InstantX/FLUX.1-dev-Controlnet-Union-alpha",
|
732 |
+
"jasperai/Flux.1-dev-Controlnet-Depth",
|
733 |
+
"jasperai/Flux.1-dev-Controlnet-Surface-Normals",
|
734 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
735 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha",
|
736 |
+
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta",
|
737 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
|
738 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
739 |
+
"InstantX/FLUX.1-dev-IP-Adapter",
|
740 |
+
"SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0",
|
741 |
+
"QwenPrompt",
|
742 |
+
"OmostPrompt",
|
743 |
+
"ESRGAN_x4",
|
744 |
+
"RIFE",
|
745 |
+
"OmniGen-v1",
|
746 |
+
"CogVideoX-5B",
|
747 |
+
"Annotators:Depth",
|
748 |
+
"Annotators:Softedge",
|
749 |
+
"Annotators:Lineart",
|
750 |
+
"Annotators:Normal",
|
751 |
+
"Annotators:Openpose",
|
752 |
+
"StableDiffusion3.5-large",
|
753 |
+
"StableDiffusion3.5-medium",
|
754 |
+
"HunyuanVideo",
|
755 |
+
"HunyuanVideo-fp8",
|
756 |
+
]
|
diffsynth/controlnets/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .controlnet_unit import ControlNetConfigUnit, ControlNetUnit, MultiControlNetManager, FluxMultiControlNetManager
|
2 |
+
from .processors import Annotator
|
diffsynth/controlnets/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (415 Bytes). View file
|
|
diffsynth/controlnets/__pycache__/controlnet_unit.cpython-311.pyc
ADDED
Binary file (8.15 kB). View file
|
|
diffsynth/controlnets/__pycache__/processors.cpython-311.pyc
ADDED
Binary file (3.89 kB). View file
|
|
diffsynth/controlnets/controlnet_unit.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from .processors import Processor_id
|
4 |
+
|
5 |
+
|
6 |
+
class ControlNetConfigUnit:
|
7 |
+
def __init__(self, processor_id: Processor_id, model_path, scale=1.0, skip_processor=False):
|
8 |
+
self.processor_id = processor_id
|
9 |
+
self.model_path = model_path
|
10 |
+
self.scale = scale
|
11 |
+
self.skip_processor = skip_processor
|
12 |
+
|
13 |
+
|
14 |
+
class ControlNetUnit:
|
15 |
+
def __init__(self, processor, model, scale=1.0):
|
16 |
+
self.processor = processor
|
17 |
+
self.model = model
|
18 |
+
self.scale = scale
|
19 |
+
|
20 |
+
|
21 |
+
class MultiControlNetManager:
|
22 |
+
def __init__(self, controlnet_units=[]):
|
23 |
+
self.processors = [unit.processor for unit in controlnet_units]
|
24 |
+
self.models = [unit.model for unit in controlnet_units]
|
25 |
+
self.scales = [unit.scale for unit in controlnet_units]
|
26 |
+
|
27 |
+
def cpu(self):
|
28 |
+
for model in self.models:
|
29 |
+
model.cpu()
|
30 |
+
|
31 |
+
def to(self, device):
|
32 |
+
for model in self.models:
|
33 |
+
model.to(device)
|
34 |
+
for processor in self.processors:
|
35 |
+
processor.to(device)
|
36 |
+
|
37 |
+
def process_image(self, image, processor_id=None):
|
38 |
+
if processor_id is None:
|
39 |
+
processed_image = [processor(image) for processor in self.processors]
|
40 |
+
else:
|
41 |
+
processed_image = [self.processors[processor_id](image)]
|
42 |
+
processed_image = torch.concat([
|
43 |
+
torch.Tensor(np.array(image_, dtype=np.float32) / 255).permute(2, 0, 1).unsqueeze(0)
|
44 |
+
for image_ in processed_image
|
45 |
+
], dim=0)
|
46 |
+
return processed_image
|
47 |
+
|
48 |
+
def __call__(
|
49 |
+
self,
|
50 |
+
sample, timestep, encoder_hidden_states, conditionings,
|
51 |
+
tiled=False, tile_size=64, tile_stride=32, **kwargs
|
52 |
+
):
|
53 |
+
res_stack = None
|
54 |
+
for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales):
|
55 |
+
res_stack_ = model(
|
56 |
+
sample, timestep, encoder_hidden_states, conditioning, **kwargs,
|
57 |
+
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
|
58 |
+
processor_id=processor.processor_id
|
59 |
+
)
|
60 |
+
res_stack_ = [res * scale for res in res_stack_]
|
61 |
+
if res_stack is None:
|
62 |
+
res_stack = res_stack_
|
63 |
+
else:
|
64 |
+
res_stack = [i + j for i, j in zip(res_stack, res_stack_)]
|
65 |
+
return res_stack
|
66 |
+
|
67 |
+
|
68 |
+
class FluxMultiControlNetManager(MultiControlNetManager):
|
69 |
+
def __init__(self, controlnet_units=[]):
|
70 |
+
super().__init__(controlnet_units=controlnet_units)
|
71 |
+
|
72 |
+
def process_image(self, image, processor_id=None):
|
73 |
+
if processor_id is None:
|
74 |
+
processed_image = [processor(image) for processor in self.processors]
|
75 |
+
else:
|
76 |
+
processed_image = [self.processors[processor_id](image)]
|
77 |
+
return processed_image
|
78 |
+
|
79 |
+
def __call__(self, conditionings, **kwargs):
|
80 |
+
res_stack, single_res_stack = None, None
|
81 |
+
for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales):
|
82 |
+
res_stack_, single_res_stack_ = model(controlnet_conditioning=conditioning, processor_id=processor.processor_id, **kwargs)
|
83 |
+
res_stack_ = [res * scale for res in res_stack_]
|
84 |
+
single_res_stack_ = [res * scale for res in single_res_stack_]
|
85 |
+
if res_stack is None:
|
86 |
+
res_stack = res_stack_
|
87 |
+
single_res_stack = single_res_stack_
|
88 |
+
else:
|
89 |
+
res_stack = [i + j for i, j in zip(res_stack, res_stack_)]
|
90 |
+
single_res_stack = [i + j for i, j in zip(single_res_stack, single_res_stack_)]
|
91 |
+
return res_stack, single_res_stack
|
diffsynth/controlnets/processors.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import Literal, TypeAlias
|
2 |
+
|
3 |
+
|
4 |
+
Processor_id: TypeAlias = Literal[
|
5 |
+
"canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "normal", "tile", "none", "inpaint"
|
6 |
+
]
|
7 |
+
|
8 |
+
class Annotator:
|
9 |
+
def __init__(self, processor_id: Processor_id, model_path="models/Annotators", detect_resolution=None, device='cuda', skip_processor=False):
|
10 |
+
if not skip_processor:
|
11 |
+
if processor_id == "canny":
|
12 |
+
from controlnet_aux.processor import CannyDetector
|
13 |
+
self.processor = CannyDetector()
|
14 |
+
elif processor_id == "depth":
|
15 |
+
from controlnet_aux.processor import MidasDetector
|
16 |
+
self.processor = MidasDetector.from_pretrained(model_path).to(device)
|
17 |
+
elif processor_id == "softedge":
|
18 |
+
from controlnet_aux.processor import HEDdetector
|
19 |
+
self.processor = HEDdetector.from_pretrained(model_path).to(device)
|
20 |
+
elif processor_id == "lineart":
|
21 |
+
from controlnet_aux.processor import LineartDetector
|
22 |
+
self.processor = LineartDetector.from_pretrained(model_path).to(device)
|
23 |
+
elif processor_id == "lineart_anime":
|
24 |
+
from controlnet_aux.processor import LineartAnimeDetector
|
25 |
+
self.processor = LineartAnimeDetector.from_pretrained(model_path).to(device)
|
26 |
+
elif processor_id == "openpose":
|
27 |
+
from controlnet_aux.processor import OpenposeDetector
|
28 |
+
self.processor = OpenposeDetector.from_pretrained(model_path).to(device)
|
29 |
+
elif processor_id == "normal":
|
30 |
+
from controlnet_aux.processor import NormalBaeDetector
|
31 |
+
self.processor = NormalBaeDetector.from_pretrained(model_path).to(device)
|
32 |
+
elif processor_id == "tile" or processor_id == "none" or processor_id == "inpaint":
|
33 |
+
self.processor = None
|
34 |
+
else:
|
35 |
+
raise ValueError(f"Unsupported processor_id: {processor_id}")
|
36 |
+
else:
|
37 |
+
self.processor = None
|
38 |
+
|
39 |
+
self.processor_id = processor_id
|
40 |
+
self.detect_resolution = detect_resolution
|
41 |
+
|
42 |
+
def to(self,device):
|
43 |
+
if hasattr(self.processor,"model") and hasattr(self.processor.model,"to"):
|
44 |
+
|
45 |
+
self.processor.model.to(device)
|
46 |
+
|
47 |
+
def __call__(self, image, mask=None):
|
48 |
+
width, height = image.size
|
49 |
+
if self.processor_id == "openpose":
|
50 |
+
kwargs = {
|
51 |
+
"include_body": True,
|
52 |
+
"include_hand": True,
|
53 |
+
"include_face": True
|
54 |
+
}
|
55 |
+
else:
|
56 |
+
kwargs = {}
|
57 |
+
if self.processor is not None:
|
58 |
+
detect_resolution = self.detect_resolution if self.detect_resolution is not None else min(width, height)
|
59 |
+
image = self.processor(image, detect_resolution=detect_resolution, image_resolution=min(width, height), **kwargs)
|
60 |
+
image = image.resize((width, height))
|
61 |
+
return image
|
62 |
+
|
diffsynth/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .video import VideoData, save_video, save_frames
|
diffsynth/data/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (269 Bytes). View file
|
|
diffsynth/data/__pycache__/video.cpython-311.pyc
ADDED
Binary file (10.7 kB). View file
|
|
diffsynth/data/simple_text_image.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os, torchvision
|
2 |
+
from torchvision import transforms
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class TextImageDataset(torch.utils.data.Dataset):
|
9 |
+
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False):
|
10 |
+
self.steps_per_epoch = steps_per_epoch
|
11 |
+
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv"))
|
12 |
+
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]]
|
13 |
+
self.text = metadata["text"].to_list()
|
14 |
+
self.height = height
|
15 |
+
self.width = width
|
16 |
+
self.image_processor = transforms.Compose(
|
17 |
+
[
|
18 |
+
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
|
19 |
+
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize([0.5], [0.5]),
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def __getitem__(self, index):
|
27 |
+
data_id = torch.randint(0, len(self.path), (1,))[0]
|
28 |
+
data_id = (data_id + index) % len(self.path) # For fixed seed.
|
29 |
+
text = self.text[data_id]
|
30 |
+
image = Image.open(self.path[data_id]).convert("RGB")
|
31 |
+
target_height, target_width = self.height, self.width
|
32 |
+
width, height = image.size
|
33 |
+
scale = max(target_width / width, target_height / height)
|
34 |
+
shape = [round(height*scale),round(width*scale)]
|
35 |
+
image = torchvision.transforms.functional.resize(image,shape,interpolation=transforms.InterpolationMode.BILINEAR)
|
36 |
+
image = self.image_processor(image)
|
37 |
+
return {"text": text, "image": image}
|
38 |
+
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return self.steps_per_epoch
|
diffsynth/data/video.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio, os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class LowMemoryVideo:
|
8 |
+
def __init__(self, file_name):
|
9 |
+
self.reader = imageio.get_reader(file_name)
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return self.reader.count_frames()
|
13 |
+
|
14 |
+
def __getitem__(self, item):
|
15 |
+
return Image.fromarray(np.array(self.reader.get_data(item))).convert("RGB")
|
16 |
+
|
17 |
+
def __del__(self):
|
18 |
+
self.reader.close()
|
19 |
+
|
20 |
+
|
21 |
+
def split_file_name(file_name):
|
22 |
+
result = []
|
23 |
+
number = -1
|
24 |
+
for i in file_name:
|
25 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
26 |
+
if number == -1:
|
27 |
+
number = 0
|
28 |
+
number = number*10 + ord(i) - ord("0")
|
29 |
+
else:
|
30 |
+
if number != -1:
|
31 |
+
result.append(number)
|
32 |
+
number = -1
|
33 |
+
result.append(i)
|
34 |
+
if number != -1:
|
35 |
+
result.append(number)
|
36 |
+
result = tuple(result)
|
37 |
+
return result
|
38 |
+
|
39 |
+
|
40 |
+
def search_for_images(folder):
|
41 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")]
|
42 |
+
file_list = [(split_file_name(file_name), file_name) for file_name in file_list]
|
43 |
+
file_list = [i[1] for i in sorted(file_list)]
|
44 |
+
file_list = [os.path.join(folder, i) for i in file_list]
|
45 |
+
return file_list
|
46 |
+
|
47 |
+
|
48 |
+
class LowMemoryImageFolder:
|
49 |
+
def __init__(self, folder, file_list=None):
|
50 |
+
if file_list is None:
|
51 |
+
self.file_list = search_for_images(folder)
|
52 |
+
else:
|
53 |
+
self.file_list = [os.path.join(folder, file_name) for file_name in file_list]
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.file_list)
|
57 |
+
|
58 |
+
def __getitem__(self, item):
|
59 |
+
return Image.open(self.file_list[item]).convert("RGB")
|
60 |
+
|
61 |
+
def __del__(self):
|
62 |
+
pass
|
63 |
+
|
64 |
+
|
65 |
+
def crop_and_resize(image, height, width):
|
66 |
+
image = np.array(image)
|
67 |
+
image_height, image_width, _ = image.shape
|
68 |
+
if image_height / image_width < height / width:
|
69 |
+
croped_width = int(image_height / height * width)
|
70 |
+
left = (image_width - croped_width) // 2
|
71 |
+
image = image[:, left: left+croped_width]
|
72 |
+
image = Image.fromarray(image).resize((width, height))
|
73 |
+
else:
|
74 |
+
croped_height = int(image_width / width * height)
|
75 |
+
left = (image_height - croped_height) // 2
|
76 |
+
image = image[left: left+croped_height, :]
|
77 |
+
image = Image.fromarray(image).resize((width, height))
|
78 |
+
return image
|
79 |
+
|
80 |
+
|
81 |
+
class VideoData:
|
82 |
+
def __init__(self, video_file=None, image_folder=None, height=None, width=None, **kwargs):
|
83 |
+
if video_file is not None:
|
84 |
+
self.data_type = "video"
|
85 |
+
self.data = LowMemoryVideo(video_file, **kwargs)
|
86 |
+
elif image_folder is not None:
|
87 |
+
self.data_type = "images"
|
88 |
+
self.data = LowMemoryImageFolder(image_folder, **kwargs)
|
89 |
+
else:
|
90 |
+
raise ValueError("Cannot open video or image folder")
|
91 |
+
self.length = None
|
92 |
+
self.set_shape(height, width)
|
93 |
+
|
94 |
+
def raw_data(self):
|
95 |
+
frames = []
|
96 |
+
for i in range(self.__len__()):
|
97 |
+
frames.append(self.__getitem__(i))
|
98 |
+
return frames
|
99 |
+
|
100 |
+
def set_length(self, length):
|
101 |
+
self.length = length
|
102 |
+
|
103 |
+
def set_shape(self, height, width):
|
104 |
+
self.height = height
|
105 |
+
self.width = width
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
if self.length is None:
|
109 |
+
return len(self.data)
|
110 |
+
else:
|
111 |
+
return self.length
|
112 |
+
|
113 |
+
def shape(self):
|
114 |
+
if self.height is not None and self.width is not None:
|
115 |
+
return self.height, self.width
|
116 |
+
else:
|
117 |
+
height, width, _ = self.__getitem__(0).shape
|
118 |
+
return height, width
|
119 |
+
|
120 |
+
def __getitem__(self, item):
|
121 |
+
frame = self.data.__getitem__(item)
|
122 |
+
width, height = frame.size
|
123 |
+
if self.height is not None and self.width is not None:
|
124 |
+
if self.height != height or self.width != width:
|
125 |
+
frame = crop_and_resize(frame, self.height, self.width)
|
126 |
+
return frame
|
127 |
+
|
128 |
+
def __del__(self):
|
129 |
+
pass
|
130 |
+
|
131 |
+
def save_images(self, folder):
|
132 |
+
os.makedirs(folder, exist_ok=True)
|
133 |
+
for i in tqdm(range(self.__len__()), desc="Saving images"):
|
134 |
+
frame = self.__getitem__(i)
|
135 |
+
frame.save(os.path.join(folder, f"{i}.png"))
|
136 |
+
|
137 |
+
|
138 |
+
def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None):
|
139 |
+
writer = imageio.get_writer(save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params)
|
140 |
+
for frame in tqdm(frames, desc="Saving video"):
|
141 |
+
frame = np.array(frame)
|
142 |
+
writer.append_data(frame)
|
143 |
+
writer.close()
|
144 |
+
|
145 |
+
def save_frames(frames, save_path):
|
146 |
+
os.makedirs(save_path, exist_ok=True)
|
147 |
+
for i, frame in enumerate(tqdm(frames, desc="Saving images")):
|
148 |
+
frame.save(os.path.join(save_path, f"{i}.png"))
|
diffsynth/extensions/ESRGAN/__init__.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import repeat
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class ResidualDenseBlock(torch.nn.Module):
|
8 |
+
|
9 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
10 |
+
super(ResidualDenseBlock, self).__init__()
|
11 |
+
self.conv1 = torch.nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
12 |
+
self.conv2 = torch.nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
13 |
+
self.conv3 = torch.nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
14 |
+
self.conv4 = torch.nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
15 |
+
self.conv5 = torch.nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
16 |
+
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
x1 = self.lrelu(self.conv1(x))
|
20 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
21 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
22 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
23 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
24 |
+
return x5 * 0.2 + x
|
25 |
+
|
26 |
+
|
27 |
+
class RRDB(torch.nn.Module):
|
28 |
+
|
29 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
30 |
+
super(RRDB, self).__init__()
|
31 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
32 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
33 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
out = self.rdb1(x)
|
37 |
+
out = self.rdb2(out)
|
38 |
+
out = self.rdb3(out)
|
39 |
+
return out * 0.2 + x
|
40 |
+
|
41 |
+
|
42 |
+
class RRDBNet(torch.nn.Module):
|
43 |
+
|
44 |
+
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, **kwargs):
|
45 |
+
super(RRDBNet, self).__init__()
|
46 |
+
self.conv_first = torch.nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
47 |
+
self.body = torch.torch.nn.Sequential(*[RRDB(num_feat=num_feat, num_grow_ch=num_grow_ch) for _ in range(num_block)])
|
48 |
+
self.conv_body = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
49 |
+
# upsample
|
50 |
+
self.conv_up1 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
51 |
+
self.conv_up2 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
52 |
+
self.conv_hr = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
53 |
+
self.conv_last = torch.nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
54 |
+
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
feat = x
|
58 |
+
feat = self.conv_first(feat)
|
59 |
+
body_feat = self.conv_body(self.body(feat))
|
60 |
+
feat = feat + body_feat
|
61 |
+
# upsample
|
62 |
+
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
|
63 |
+
feat = self.lrelu(self.conv_up1(feat))
|
64 |
+
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
|
65 |
+
feat = self.lrelu(self.conv_up2(feat))
|
66 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
67 |
+
return out
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def state_dict_converter():
|
71 |
+
return RRDBNetStateDictConverter()
|
72 |
+
|
73 |
+
|
74 |
+
class RRDBNetStateDictConverter:
|
75 |
+
def __init__(self):
|
76 |
+
pass
|
77 |
+
|
78 |
+
def from_diffusers(self, state_dict):
|
79 |
+
return state_dict, {"upcast_to_float32": True}
|
80 |
+
|
81 |
+
def from_civitai(self, state_dict):
|
82 |
+
return state_dict, {"upcast_to_float32": True}
|
83 |
+
|
84 |
+
|
85 |
+
class ESRGAN(torch.nn.Module):
|
86 |
+
def __init__(self, model):
|
87 |
+
super().__init__()
|
88 |
+
self.model = model
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def from_model_manager(model_manager):
|
92 |
+
return ESRGAN(model_manager.fetch_model("esrgan"))
|
93 |
+
|
94 |
+
def process_image(self, image):
|
95 |
+
image = torch.Tensor(np.array(image, dtype=np.float32) / 255).permute(2, 0, 1)
|
96 |
+
return image
|
97 |
+
|
98 |
+
def process_images(self, images):
|
99 |
+
images = [self.process_image(image) for image in images]
|
100 |
+
images = torch.stack(images)
|
101 |
+
return images
|
102 |
+
|
103 |
+
def decode_images(self, images):
|
104 |
+
images = (images.permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8)
|
105 |
+
images = [Image.fromarray(image) for image in images]
|
106 |
+
return images
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def upscale(self, images, batch_size=4, progress_bar=lambda x:x):
|
110 |
+
if not isinstance(images, list):
|
111 |
+
images = [images]
|
112 |
+
is_single_image = True
|
113 |
+
else:
|
114 |
+
is_single_image = False
|
115 |
+
|
116 |
+
# Preprocess
|
117 |
+
input_tensor = self.process_images(images)
|
118 |
+
|
119 |
+
# Interpolate
|
120 |
+
output_tensor = []
|
121 |
+
for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)):
|
122 |
+
batch_id_ = min(batch_id + batch_size, input_tensor.shape[0])
|
123 |
+
batch_input_tensor = input_tensor[batch_id: batch_id_]
|
124 |
+
batch_input_tensor = batch_input_tensor.to(
|
125 |
+
device=self.model.conv_first.weight.device,
|
126 |
+
dtype=self.model.conv_first.weight.dtype)
|
127 |
+
batch_output_tensor = self.model(batch_input_tensor)
|
128 |
+
output_tensor.append(batch_output_tensor.cpu())
|
129 |
+
|
130 |
+
# Output
|
131 |
+
output_tensor = torch.concat(output_tensor, dim=0)
|
132 |
+
|
133 |
+
# To images
|
134 |
+
output_images = self.decode_images(output_tensor)
|
135 |
+
if is_single_image:
|
136 |
+
output_images = output_images[0]
|
137 |
+
return output_images
|
diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (11.8 kB). View file
|
|
diffsynth/extensions/FastBlend/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .runners.fast import TableManager, PyramidPatchMatcher
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import cupy as cp
|
5 |
+
|
6 |
+
|
7 |
+
class FastBlendSmoother:
|
8 |
+
def __init__(self):
|
9 |
+
self.batch_size = 8
|
10 |
+
self.window_size = 64
|
11 |
+
self.ebsynth_config = {
|
12 |
+
"minimum_patch_size": 5,
|
13 |
+
"threads_per_block": 8,
|
14 |
+
"num_iter": 5,
|
15 |
+
"gpu_id": 0,
|
16 |
+
"guide_weight": 10.0,
|
17 |
+
"initialize": "identity",
|
18 |
+
"tracking_window_size": 0,
|
19 |
+
}
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def from_model_manager(model_manager):
|
23 |
+
# TODO: fetch GPU ID from model_manager
|
24 |
+
return FastBlendSmoother()
|
25 |
+
|
26 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config):
|
27 |
+
frames_guide = [np.array(frame) for frame in frames_guide]
|
28 |
+
frames_style = [np.array(frame) for frame in frames_style]
|
29 |
+
table_manager = TableManager()
|
30 |
+
patch_match_engine = PyramidPatchMatcher(
|
31 |
+
image_height=frames_style[0].shape[0],
|
32 |
+
image_width=frames_style[0].shape[1],
|
33 |
+
channel=3,
|
34 |
+
**ebsynth_config
|
35 |
+
)
|
36 |
+
# left part
|
37 |
+
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="FastBlend Step 1/4")
|
38 |
+
table_l = table_manager.remapping_table_to_blending_table(table_l)
|
39 |
+
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="FastBlend Step 2/4")
|
40 |
+
# right part
|
41 |
+
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="FastBlend Step 3/4")
|
42 |
+
table_r = table_manager.remapping_table_to_blending_table(table_r)
|
43 |
+
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="FastBlend Step 4/4")[::-1]
|
44 |
+
# merge
|
45 |
+
frames = []
|
46 |
+
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r):
|
47 |
+
weight_m = -1
|
48 |
+
weight = weight_l + weight_m + weight_r
|
49 |
+
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight)
|
50 |
+
frames.append(frame)
|
51 |
+
frames = [Image.fromarray(frame.clip(0, 255).astype("uint8")) for frame in frames]
|
52 |
+
return frames
|
53 |
+
|
54 |
+
def __call__(self, rendered_frames, original_frames=None, **kwargs):
|
55 |
+
frames = self.run(
|
56 |
+
original_frames, rendered_frames,
|
57 |
+
self.batch_size, self.window_size, self.ebsynth_config
|
58 |
+
)
|
59 |
+
mempool = cp.get_default_memory_pool()
|
60 |
+
pinned_mempool = cp.get_default_pinned_memory_pool()
|
61 |
+
mempool.free_all_blocks()
|
62 |
+
pinned_mempool.free_all_blocks()
|
63 |
+
return frames
|
diffsynth/extensions/FastBlend/api.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner
|
2 |
+
from .data import VideoData, get_video_fps, save_video, search_for_images
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder):
|
8 |
+
frames_guide = VideoData(video_guide, video_guide_folder)
|
9 |
+
frames_style = VideoData(video_style, video_style_folder)
|
10 |
+
message = ""
|
11 |
+
if len(frames_guide) < len(frames_style):
|
12 |
+
message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n"
|
13 |
+
frames_style.set_length(len(frames_guide))
|
14 |
+
elif len(frames_guide) > len(frames_style):
|
15 |
+
message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n"
|
16 |
+
frames_guide.set_length(len(frames_style))
|
17 |
+
height_guide, width_guide = frames_guide.shape()
|
18 |
+
height_style, width_style = frames_style.shape()
|
19 |
+
if height_guide != height_style or width_guide != width_style:
|
20 |
+
message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n"
|
21 |
+
frames_style.set_shape(height_guide, width_guide)
|
22 |
+
return frames_guide, frames_style, message
|
23 |
+
|
24 |
+
|
25 |
+
def smooth_video(
|
26 |
+
video_guide,
|
27 |
+
video_guide_folder,
|
28 |
+
video_style,
|
29 |
+
video_style_folder,
|
30 |
+
mode,
|
31 |
+
window_size,
|
32 |
+
batch_size,
|
33 |
+
tracking_window_size,
|
34 |
+
output_path,
|
35 |
+
fps,
|
36 |
+
minimum_patch_size,
|
37 |
+
num_iter,
|
38 |
+
guide_weight,
|
39 |
+
initialize,
|
40 |
+
progress = None,
|
41 |
+
):
|
42 |
+
# input
|
43 |
+
frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder)
|
44 |
+
if len(message) > 0:
|
45 |
+
print(message)
|
46 |
+
# output
|
47 |
+
if output_path == "":
|
48 |
+
if video_style is None:
|
49 |
+
output_path = os.path.join(video_style_folder, "output")
|
50 |
+
else:
|
51 |
+
output_path = os.path.join(os.path.split(video_style)[0], "output")
|
52 |
+
os.makedirs(output_path, exist_ok=True)
|
53 |
+
print("No valid output_path. Your video will be saved here:", output_path)
|
54 |
+
elif not os.path.exists(output_path):
|
55 |
+
os.makedirs(output_path, exist_ok=True)
|
56 |
+
print("Your video will be saved here:", output_path)
|
57 |
+
frames_path = os.path.join(output_path, "frames")
|
58 |
+
video_path = os.path.join(output_path, "video.mp4")
|
59 |
+
os.makedirs(frames_path, exist_ok=True)
|
60 |
+
# process
|
61 |
+
if mode == "Fast" or mode == "Balanced":
|
62 |
+
tracking_window_size = 0
|
63 |
+
ebsynth_config = {
|
64 |
+
"minimum_patch_size": minimum_patch_size,
|
65 |
+
"threads_per_block": 8,
|
66 |
+
"num_iter": num_iter,
|
67 |
+
"gpu_id": 0,
|
68 |
+
"guide_weight": guide_weight,
|
69 |
+
"initialize": initialize,
|
70 |
+
"tracking_window_size": tracking_window_size,
|
71 |
+
}
|
72 |
+
if mode == "Fast":
|
73 |
+
FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
74 |
+
elif mode == "Balanced":
|
75 |
+
BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
76 |
+
elif mode == "Accurate":
|
77 |
+
AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
|
78 |
+
# output
|
79 |
+
try:
|
80 |
+
fps = int(fps)
|
81 |
+
except:
|
82 |
+
fps = get_video_fps(video_style) if video_style is not None else 30
|
83 |
+
print("Fps:", fps)
|
84 |
+
print("Saving video...")
|
85 |
+
video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps)
|
86 |
+
print("Success!")
|
87 |
+
print("Your frames are here:", frames_path)
|
88 |
+
print("Your video is here:", video_path)
|
89 |
+
return output_path, fps, video_path
|
90 |
+
|
91 |
+
|
92 |
+
class KeyFrameMatcher:
|
93 |
+
def __init__(self):
|
94 |
+
pass
|
95 |
+
|
96 |
+
def extract_number_from_filename(self, file_name):
|
97 |
+
result = []
|
98 |
+
number = -1
|
99 |
+
for i in file_name:
|
100 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
101 |
+
if number == -1:
|
102 |
+
number = 0
|
103 |
+
number = number*10 + ord(i) - ord("0")
|
104 |
+
else:
|
105 |
+
if number != -1:
|
106 |
+
result.append(number)
|
107 |
+
number = -1
|
108 |
+
if number != -1:
|
109 |
+
result.append(number)
|
110 |
+
result = tuple(result)
|
111 |
+
return result
|
112 |
+
|
113 |
+
def extract_number_from_filenames(self, file_names):
|
114 |
+
numbers = [self.extract_number_from_filename(file_name) for file_name in file_names]
|
115 |
+
min_length = min(len(i) for i in numbers)
|
116 |
+
for i in range(min_length-1, -1, -1):
|
117 |
+
if len(set(number[i] for number in numbers))==len(file_names):
|
118 |
+
return [number[i] for number in numbers]
|
119 |
+
return list(range(len(file_names)))
|
120 |
+
|
121 |
+
def match_using_filename(self, file_names_a, file_names_b):
|
122 |
+
file_names_b_set = set(file_names_b)
|
123 |
+
matched_file_name = []
|
124 |
+
for file_name in file_names_a:
|
125 |
+
if file_name not in file_names_b_set:
|
126 |
+
matched_file_name.append(None)
|
127 |
+
else:
|
128 |
+
matched_file_name.append(file_name)
|
129 |
+
return matched_file_name
|
130 |
+
|
131 |
+
def match_using_numbers(self, file_names_a, file_names_b):
|
132 |
+
numbers_a = self.extract_number_from_filenames(file_names_a)
|
133 |
+
numbers_b = self.extract_number_from_filenames(file_names_b)
|
134 |
+
numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)}
|
135 |
+
matched_file_name = []
|
136 |
+
for number in numbers_a:
|
137 |
+
if number in numbers_b_dict:
|
138 |
+
matched_file_name.append(numbers_b_dict[number])
|
139 |
+
else:
|
140 |
+
matched_file_name.append(None)
|
141 |
+
return matched_file_name
|
142 |
+
|
143 |
+
def match_filenames(self, file_names_a, file_names_b):
|
144 |
+
matched_file_name = self.match_using_filename(file_names_a, file_names_b)
|
145 |
+
if sum([i is not None for i in matched_file_name]) > 0:
|
146 |
+
return matched_file_name
|
147 |
+
matched_file_name = self.match_using_numbers(file_names_a, file_names_b)
|
148 |
+
return matched_file_name
|
149 |
+
|
150 |
+
|
151 |
+
def detect_frames(frames_path, keyframes_path):
|
152 |
+
if not os.path.exists(frames_path) and not os.path.exists(keyframes_path):
|
153 |
+
return "Please input the directory of guide video and rendered frames"
|
154 |
+
elif not os.path.exists(frames_path):
|
155 |
+
return "Please input the directory of guide video"
|
156 |
+
elif not os.path.exists(keyframes_path):
|
157 |
+
return "Please input the directory of rendered frames"
|
158 |
+
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
|
159 |
+
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
|
160 |
+
if len(frames)==0:
|
161 |
+
return f"No images detected in {frames_path}"
|
162 |
+
if len(keyframes)==0:
|
163 |
+
return f"No images detected in {keyframes_path}"
|
164 |
+
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
|
165 |
+
max_filename_length = max([len(i) for i in frames])
|
166 |
+
if sum([i is not None for i in matched_keyframes])==0:
|
167 |
+
message = ""
|
168 |
+
for frame, matched_keyframe in zip(frames, matched_keyframes):
|
169 |
+
message += frame + " " * (max_filename_length - len(frame) + 1)
|
170 |
+
message += "--> No matched keyframes\n"
|
171 |
+
else:
|
172 |
+
message = ""
|
173 |
+
for frame, matched_keyframe in zip(frames, matched_keyframes):
|
174 |
+
message += frame + " " * (max_filename_length - len(frame) + 1)
|
175 |
+
if matched_keyframe is None:
|
176 |
+
message += "--> [to be rendered]\n"
|
177 |
+
else:
|
178 |
+
message += f"--> {matched_keyframe}\n"
|
179 |
+
return message
|
180 |
+
|
181 |
+
|
182 |
+
def check_input_for_interpolating(frames_path, keyframes_path):
|
183 |
+
# search for images
|
184 |
+
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
|
185 |
+
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
|
186 |
+
# match frames
|
187 |
+
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
|
188 |
+
file_list = [file_name for file_name in matched_keyframes if file_name is not None]
|
189 |
+
index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None]
|
190 |
+
frames_guide = VideoData(None, frames_path)
|
191 |
+
frames_style = VideoData(None, keyframes_path, file_list=file_list)
|
192 |
+
# match shape
|
193 |
+
message = ""
|
194 |
+
height_guide, width_guide = frames_guide.shape()
|
195 |
+
height_style, width_style = frames_style.shape()
|
196 |
+
if height_guide != height_style or width_guide != width_style:
|
197 |
+
message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n"
|
198 |
+
frames_style.set_shape(height_guide, width_guide)
|
199 |
+
return frames_guide, frames_style, index_style, message
|
200 |
+
|
201 |
+
|
202 |
+
def interpolate_video(
|
203 |
+
frames_path,
|
204 |
+
keyframes_path,
|
205 |
+
output_path,
|
206 |
+
fps,
|
207 |
+
batch_size,
|
208 |
+
tracking_window_size,
|
209 |
+
minimum_patch_size,
|
210 |
+
num_iter,
|
211 |
+
guide_weight,
|
212 |
+
initialize,
|
213 |
+
progress = None,
|
214 |
+
):
|
215 |
+
# input
|
216 |
+
frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path)
|
217 |
+
if len(message) > 0:
|
218 |
+
print(message)
|
219 |
+
# output
|
220 |
+
if output_path == "":
|
221 |
+
output_path = os.path.join(keyframes_path, "output")
|
222 |
+
os.makedirs(output_path, exist_ok=True)
|
223 |
+
print("No valid output_path. Your video will be saved here:", output_path)
|
224 |
+
elif not os.path.exists(output_path):
|
225 |
+
os.makedirs(output_path, exist_ok=True)
|
226 |
+
print("Your video will be saved here:", output_path)
|
227 |
+
output_frames_path = os.path.join(output_path, "frames")
|
228 |
+
output_video_path = os.path.join(output_path, "video.mp4")
|
229 |
+
os.makedirs(output_frames_path, exist_ok=True)
|
230 |
+
# process
|
231 |
+
ebsynth_config = {
|
232 |
+
"minimum_patch_size": minimum_patch_size,
|
233 |
+
"threads_per_block": 8,
|
234 |
+
"num_iter": num_iter,
|
235 |
+
"gpu_id": 0,
|
236 |
+
"guide_weight": guide_weight,
|
237 |
+
"initialize": initialize,
|
238 |
+
"tracking_window_size": tracking_window_size
|
239 |
+
}
|
240 |
+
if len(index_style)==1:
|
241 |
+
InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
|
242 |
+
else:
|
243 |
+
InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
|
244 |
+
try:
|
245 |
+
fps = int(fps)
|
246 |
+
except:
|
247 |
+
fps = 30
|
248 |
+
print("Fps:", fps)
|
249 |
+
print("Saving video...")
|
250 |
+
video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps)
|
251 |
+
print("Success!")
|
252 |
+
print("Your frames are here:", output_frames_path)
|
253 |
+
print("Your video is here:", video_path)
|
254 |
+
return output_path, fps, video_path
|
255 |
+
|
256 |
+
|
257 |
+
def on_ui_tabs():
|
258 |
+
with gr.Blocks(analytics_enabled=False) as ui_component:
|
259 |
+
with gr.Tab("Blend"):
|
260 |
+
gr.Markdown("""
|
261 |
+
# Blend
|
262 |
+
|
263 |
+
Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution.
|
264 |
+
""")
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column():
|
267 |
+
with gr.Tab("Guide video"):
|
268 |
+
video_guide = gr.Video(label="Guide video")
|
269 |
+
with gr.Tab("Guide video (images format)"):
|
270 |
+
video_guide_folder = gr.Textbox(label="Guide video (images format)", value="")
|
271 |
+
with gr.Column():
|
272 |
+
with gr.Tab("Style video"):
|
273 |
+
video_style = gr.Video(label="Style video")
|
274 |
+
with gr.Tab("Style video (images format)"):
|
275 |
+
video_style_folder = gr.Textbox(label="Style video (images format)", value="")
|
276 |
+
with gr.Column():
|
277 |
+
output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video")
|
278 |
+
fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
|
279 |
+
video_output = gr.Video(label="Output video", interactive=False, show_share_button=True)
|
280 |
+
btn = gr.Button(value="Blend")
|
281 |
+
with gr.Row():
|
282 |
+
with gr.Column():
|
283 |
+
gr.Markdown("# Settings")
|
284 |
+
mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True)
|
285 |
+
window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True)
|
286 |
+
batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
|
287 |
+
tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True)
|
288 |
+
gr.Markdown("## Advanced Settings")
|
289 |
+
minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True)
|
290 |
+
num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
|
291 |
+
guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
|
292 |
+
initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
|
293 |
+
with gr.Column():
|
294 |
+
gr.Markdown("""
|
295 |
+
# Reference
|
296 |
+
|
297 |
+
* Output directory: the directory to save the video.
|
298 |
+
* Inference mode
|
299 |
+
|
300 |
+
|Mode|Time|Memory|Quality|Frame by frame output|Description|
|
301 |
+
|-|-|-|-|-|-|
|
302 |
+
|Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.|
|
303 |
+
|Balanced|■■|■|■■|Yes|Blend the frames naively.|
|
304 |
+
|Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.|
|
305 |
+
|
306 |
+
* Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy.
|
307 |
+
* Batch size: a larger batch size makes the program faster but requires more VRAM.
|
308 |
+
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
|
309 |
+
* Advanced settings
|
310 |
+
* Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5)
|
311 |
+
* Number of iterations: the number of iterations of patch matching. (Default: 5)
|
312 |
+
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
|
313 |
+
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
|
314 |
+
""")
|
315 |
+
btn.click(
|
316 |
+
smooth_video,
|
317 |
+
inputs=[
|
318 |
+
video_guide,
|
319 |
+
video_guide_folder,
|
320 |
+
video_style,
|
321 |
+
video_style_folder,
|
322 |
+
mode,
|
323 |
+
window_size,
|
324 |
+
batch_size,
|
325 |
+
tracking_window_size,
|
326 |
+
output_path,
|
327 |
+
fps,
|
328 |
+
minimum_patch_size,
|
329 |
+
num_iter,
|
330 |
+
guide_weight,
|
331 |
+
initialize
|
332 |
+
],
|
333 |
+
outputs=[output_path, fps, video_output]
|
334 |
+
)
|
335 |
+
with gr.Tab("Interpolate"):
|
336 |
+
gr.Markdown("""
|
337 |
+
# Interpolate
|
338 |
+
|
339 |
+
Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution.
|
340 |
+
""")
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column():
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="")
|
346 |
+
with gr.Column():
|
347 |
+
rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="")
|
348 |
+
with gr.Row():
|
349 |
+
detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False)
|
350 |
+
video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
|
351 |
+
rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
|
352 |
+
with gr.Column():
|
353 |
+
output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes")
|
354 |
+
fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
|
355 |
+
video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True)
|
356 |
+
btn_ = gr.Button(value="Interpolate")
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column():
|
359 |
+
gr.Markdown("# Settings")
|
360 |
+
batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
|
361 |
+
tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True)
|
362 |
+
gr.Markdown("## Advanced Settings")
|
363 |
+
minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True)
|
364 |
+
num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
|
365 |
+
guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
|
366 |
+
initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
|
367 |
+
with gr.Column():
|
368 |
+
gr.Markdown("""
|
369 |
+
# Reference
|
370 |
+
|
371 |
+
* Output directory: the directory to save the video.
|
372 |
+
* Batch size: a larger batch size makes the program faster but requires more VRAM.
|
373 |
+
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
|
374 |
+
* Advanced settings
|
375 |
+
* Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)**
|
376 |
+
* Number of iterations: the number of iterations of patch matching. (Default: 5)
|
377 |
+
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
|
378 |
+
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
|
379 |
+
""")
|
380 |
+
btn_.click(
|
381 |
+
interpolate_video,
|
382 |
+
inputs=[
|
383 |
+
video_guide_folder_,
|
384 |
+
rendered_keyframes_,
|
385 |
+
output_path_,
|
386 |
+
fps_,
|
387 |
+
batch_size_,
|
388 |
+
tracking_window_size_,
|
389 |
+
minimum_patch_size_,
|
390 |
+
num_iter_,
|
391 |
+
guide_weight_,
|
392 |
+
initialize_,
|
393 |
+
],
|
394 |
+
outputs=[output_path_, fps_, video_output_]
|
395 |
+
)
|
396 |
+
|
397 |
+
return [(ui_component, "FastBlend", "FastBlend_ui")]
|
diffsynth/extensions/FastBlend/cupy_kernels.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cupy as cp
|
2 |
+
|
3 |
+
remapping_kernel = cp.RawKernel(r'''
|
4 |
+
extern "C" __global__
|
5 |
+
void remap(
|
6 |
+
const int height,
|
7 |
+
const int width,
|
8 |
+
const int channel,
|
9 |
+
const int patch_size,
|
10 |
+
const int pad_size,
|
11 |
+
const float* source_style,
|
12 |
+
const int* nnf,
|
13 |
+
float* target_style
|
14 |
+
) {
|
15 |
+
const int r = (patch_size - 1) / 2;
|
16 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
17 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
18 |
+
if (x >= height or y >= width) return;
|
19 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
20 |
+
const int pid = (x + pad_size) * (width + pad_size * 2) + (y + pad_size);
|
21 |
+
const int min_px = x < r ? -x : -r;
|
22 |
+
const int max_px = x + r > height - 1 ? height - 1 - x : r;
|
23 |
+
const int min_py = y < r ? -y : -r;
|
24 |
+
const int max_py = y + r > width - 1 ? width - 1 - y : r;
|
25 |
+
int num = 0;
|
26 |
+
for (int px = min_px; px <= max_px; px++){
|
27 |
+
for (int py = min_py; py <= max_py; py++){
|
28 |
+
const int nid = (x + px) * width + y + py;
|
29 |
+
const int x_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 0] - px;
|
30 |
+
const int y_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 1] - py;
|
31 |
+
if (x_ < 0 or y_ < 0 or x_ >= height or y_ >= width)continue;
|
32 |
+
const int pid_ = (x_ + pad_size) * (width + pad_size * 2) + (y_ + pad_size);
|
33 |
+
num++;
|
34 |
+
for (int c = 0; c < channel; c++){
|
35 |
+
target_style[z + pid * channel + c] += source_style[z + pid_ * channel + c];
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
39 |
+
for (int c = 0; c < channel; c++){
|
40 |
+
target_style[z + pid * channel + c] /= num;
|
41 |
+
}
|
42 |
+
}
|
43 |
+
''', 'remap')
|
44 |
+
|
45 |
+
|
46 |
+
patch_error_kernel = cp.RawKernel(r'''
|
47 |
+
extern "C" __global__
|
48 |
+
void patch_error(
|
49 |
+
const int height,
|
50 |
+
const int width,
|
51 |
+
const int channel,
|
52 |
+
const int patch_size,
|
53 |
+
const int pad_size,
|
54 |
+
const float* source,
|
55 |
+
const int* nnf,
|
56 |
+
const float* target,
|
57 |
+
float* error
|
58 |
+
) {
|
59 |
+
const int r = (patch_size - 1) / 2;
|
60 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
61 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
62 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
63 |
+
if (x >= height or y >= width) return;
|
64 |
+
const int x_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 0];
|
65 |
+
const int y_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 1];
|
66 |
+
float e = 0;
|
67 |
+
for (int px = -r; px <= r; px++){
|
68 |
+
for (int py = -r; py <= r; py++){
|
69 |
+
const int pid = (x + pad_size + px) * (width + pad_size * 2) + y + pad_size + py;
|
70 |
+
const int pid_ = (x_ + pad_size + px) * (width + pad_size * 2) + y_ + pad_size + py;
|
71 |
+
for (int c = 0; c < channel; c++){
|
72 |
+
const float diff = target[z + pid * channel + c] - source[z + pid_ * channel + c];
|
73 |
+
e += diff * diff;
|
74 |
+
}
|
75 |
+
}
|
76 |
+
}
|
77 |
+
error[blockIdx.z * height * width + x * width + y] = e;
|
78 |
+
}
|
79 |
+
''', 'patch_error')
|
80 |
+
|
81 |
+
|
82 |
+
pairwise_patch_error_kernel = cp.RawKernel(r'''
|
83 |
+
extern "C" __global__
|
84 |
+
void pairwise_patch_error(
|
85 |
+
const int height,
|
86 |
+
const int width,
|
87 |
+
const int channel,
|
88 |
+
const int patch_size,
|
89 |
+
const int pad_size,
|
90 |
+
const float* source_a,
|
91 |
+
const int* nnf_a,
|
92 |
+
const float* source_b,
|
93 |
+
const int* nnf_b,
|
94 |
+
float* error
|
95 |
+
) {
|
96 |
+
const int r = (patch_size - 1) / 2;
|
97 |
+
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
98 |
+
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
99 |
+
const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel;
|
100 |
+
if (x >= height or y >= width) return;
|
101 |
+
const int z_nnf = blockIdx.z * height * width * 2 + (x * width + y) * 2;
|
102 |
+
const int x_a = nnf_a[z_nnf + 0];
|
103 |
+
const int y_a = nnf_a[z_nnf + 1];
|
104 |
+
const int x_b = nnf_b[z_nnf + 0];
|
105 |
+
const int y_b = nnf_b[z_nnf + 1];
|
106 |
+
float e = 0;
|
107 |
+
for (int px = -r; px <= r; px++){
|
108 |
+
for (int py = -r; py <= r; py++){
|
109 |
+
const int pid_a = (x_a + pad_size + px) * (width + pad_size * 2) + y_a + pad_size + py;
|
110 |
+
const int pid_b = (x_b + pad_size + px) * (width + pad_size * 2) + y_b + pad_size + py;
|
111 |
+
for (int c = 0; c < channel; c++){
|
112 |
+
const float diff = source_a[z + pid_a * channel + c] - source_b[z + pid_b * channel + c];
|
113 |
+
e += diff * diff;
|
114 |
+
}
|
115 |
+
}
|
116 |
+
}
|
117 |
+
error[blockIdx.z * height * width + x * width + y] = e;
|
118 |
+
}
|
119 |
+
''', 'pairwise_patch_error')
|
diffsynth/extensions/FastBlend/data.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio, os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def read_video(file_name):
|
7 |
+
reader = imageio.get_reader(file_name)
|
8 |
+
video = []
|
9 |
+
for frame in reader:
|
10 |
+
frame = np.array(frame)
|
11 |
+
video.append(frame)
|
12 |
+
reader.close()
|
13 |
+
return video
|
14 |
+
|
15 |
+
|
16 |
+
def get_video_fps(file_name):
|
17 |
+
reader = imageio.get_reader(file_name)
|
18 |
+
fps = reader.get_meta_data()["fps"]
|
19 |
+
reader.close()
|
20 |
+
return fps
|
21 |
+
|
22 |
+
|
23 |
+
def save_video(frames_path, video_path, num_frames, fps):
|
24 |
+
writer = imageio.get_writer(video_path, fps=fps, quality=9)
|
25 |
+
for i in range(num_frames):
|
26 |
+
frame = np.array(Image.open(os.path.join(frames_path, "%05d.png" % i)))
|
27 |
+
writer.append_data(frame)
|
28 |
+
writer.close()
|
29 |
+
return video_path
|
30 |
+
|
31 |
+
|
32 |
+
class LowMemoryVideo:
|
33 |
+
def __init__(self, file_name):
|
34 |
+
self.reader = imageio.get_reader(file_name)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self.reader.count_frames()
|
38 |
+
|
39 |
+
def __getitem__(self, item):
|
40 |
+
return np.array(self.reader.get_data(item))
|
41 |
+
|
42 |
+
def __del__(self):
|
43 |
+
self.reader.close()
|
44 |
+
|
45 |
+
|
46 |
+
def split_file_name(file_name):
|
47 |
+
result = []
|
48 |
+
number = -1
|
49 |
+
for i in file_name:
|
50 |
+
if ord(i)>=ord("0") and ord(i)<=ord("9"):
|
51 |
+
if number == -1:
|
52 |
+
number = 0
|
53 |
+
number = number*10 + ord(i) - ord("0")
|
54 |
+
else:
|
55 |
+
if number != -1:
|
56 |
+
result.append(number)
|
57 |
+
number = -1
|
58 |
+
result.append(i)
|
59 |
+
if number != -1:
|
60 |
+
result.append(number)
|
61 |
+
result = tuple(result)
|
62 |
+
return result
|
63 |
+
|
64 |
+
|
65 |
+
def search_for_images(folder):
|
66 |
+
file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")]
|
67 |
+
file_list = [(split_file_name(file_name), file_name) for file_name in file_list]
|
68 |
+
file_list = [i[1] for i in sorted(file_list)]
|
69 |
+
file_list = [os.path.join(folder, i) for i in file_list]
|
70 |
+
return file_list
|
71 |
+
|
72 |
+
|
73 |
+
def read_images(folder):
|
74 |
+
file_list = search_for_images(folder)
|
75 |
+
frames = [np.array(Image.open(i)) for i in file_list]
|
76 |
+
return frames
|
77 |
+
|
78 |
+
|
79 |
+
class LowMemoryImageFolder:
|
80 |
+
def __init__(self, folder, file_list=None):
|
81 |
+
if file_list is None:
|
82 |
+
self.file_list = search_for_images(folder)
|
83 |
+
else:
|
84 |
+
self.file_list = [os.path.join(folder, file_name) for file_name in file_list]
|
85 |
+
|
86 |
+
def __len__(self):
|
87 |
+
return len(self.file_list)
|
88 |
+
|
89 |
+
def __getitem__(self, item):
|
90 |
+
return np.array(Image.open(self.file_list[item]))
|
91 |
+
|
92 |
+
def __del__(self):
|
93 |
+
pass
|
94 |
+
|
95 |
+
|
96 |
+
class VideoData:
|
97 |
+
def __init__(self, video_file, image_folder, **kwargs):
|
98 |
+
if video_file is not None:
|
99 |
+
self.data_type = "video"
|
100 |
+
self.data = LowMemoryVideo(video_file, **kwargs)
|
101 |
+
elif image_folder is not None:
|
102 |
+
self.data_type = "images"
|
103 |
+
self.data = LowMemoryImageFolder(image_folder, **kwargs)
|
104 |
+
else:
|
105 |
+
raise ValueError("Cannot open video or image folder")
|
106 |
+
self.length = None
|
107 |
+
self.height = None
|
108 |
+
self.width = None
|
109 |
+
|
110 |
+
def raw_data(self):
|
111 |
+
frames = []
|
112 |
+
for i in range(self.__len__()):
|
113 |
+
frames.append(self.__getitem__(i))
|
114 |
+
return frames
|
115 |
+
|
116 |
+
def set_length(self, length):
|
117 |
+
self.length = length
|
118 |
+
|
119 |
+
def set_shape(self, height, width):
|
120 |
+
self.height = height
|
121 |
+
self.width = width
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
if self.length is None:
|
125 |
+
return len(self.data)
|
126 |
+
else:
|
127 |
+
return self.length
|
128 |
+
|
129 |
+
def shape(self):
|
130 |
+
if self.height is not None and self.width is not None:
|
131 |
+
return self.height, self.width
|
132 |
+
else:
|
133 |
+
height, width, _ = self.__getitem__(0).shape
|
134 |
+
return height, width
|
135 |
+
|
136 |
+
def __getitem__(self, item):
|
137 |
+
frame = self.data.__getitem__(item)
|
138 |
+
height, width, _ = frame.shape
|
139 |
+
if self.height is not None and self.width is not None:
|
140 |
+
if self.height != height or self.width != width:
|
141 |
+
frame = Image.fromarray(frame).resize((self.width, self.height))
|
142 |
+
frame = np.array(frame)
|
143 |
+
return frame
|
144 |
+
|
145 |
+
def __del__(self):
|
146 |
+
pass
|
diffsynth/extensions/FastBlend/patch_match.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cupy_kernels import remapping_kernel, patch_error_kernel, pairwise_patch_error_kernel
|
2 |
+
import numpy as np
|
3 |
+
import cupy as cp
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
class PatchMatcher:
|
8 |
+
def __init__(
|
9 |
+
self, height, width, channel, minimum_patch_size,
|
10 |
+
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
|
11 |
+
random_search_steps=3, random_search_range=4,
|
12 |
+
use_mean_target_style=False, use_pairwise_patch_error=False,
|
13 |
+
tracking_window_size=0
|
14 |
+
):
|
15 |
+
self.height = height
|
16 |
+
self.width = width
|
17 |
+
self.channel = channel
|
18 |
+
self.minimum_patch_size = minimum_patch_size
|
19 |
+
self.threads_per_block = threads_per_block
|
20 |
+
self.num_iter = num_iter
|
21 |
+
self.gpu_id = gpu_id
|
22 |
+
self.guide_weight = guide_weight
|
23 |
+
self.random_search_steps = random_search_steps
|
24 |
+
self.random_search_range = random_search_range
|
25 |
+
self.use_mean_target_style = use_mean_target_style
|
26 |
+
self.use_pairwise_patch_error = use_pairwise_patch_error
|
27 |
+
self.tracking_window_size = tracking_window_size
|
28 |
+
|
29 |
+
self.patch_size_list = [minimum_patch_size + i*2 for i in range(num_iter)][::-1]
|
30 |
+
self.pad_size = self.patch_size_list[0] // 2
|
31 |
+
self.grid = (
|
32 |
+
(height + threads_per_block - 1) // threads_per_block,
|
33 |
+
(width + threads_per_block - 1) // threads_per_block
|
34 |
+
)
|
35 |
+
self.block = (threads_per_block, threads_per_block)
|
36 |
+
|
37 |
+
def pad_image(self, image):
|
38 |
+
return cp.pad(image, ((0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size), (0, 0)))
|
39 |
+
|
40 |
+
def unpad_image(self, image):
|
41 |
+
return image[:, self.pad_size: -self.pad_size, self.pad_size: -self.pad_size, :]
|
42 |
+
|
43 |
+
def apply_nnf_to_image(self, nnf, source):
|
44 |
+
batch_size = source.shape[0]
|
45 |
+
target = cp.zeros((batch_size, self.height + self.pad_size * 2, self.width + self.pad_size * 2, self.channel), dtype=cp.float32)
|
46 |
+
remapping_kernel(
|
47 |
+
self.grid + (batch_size,),
|
48 |
+
self.block,
|
49 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target)
|
50 |
+
)
|
51 |
+
return target
|
52 |
+
|
53 |
+
def get_patch_error(self, source, nnf, target):
|
54 |
+
batch_size = source.shape[0]
|
55 |
+
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
|
56 |
+
patch_error_kernel(
|
57 |
+
self.grid + (batch_size,),
|
58 |
+
self.block,
|
59 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target, error)
|
60 |
+
)
|
61 |
+
return error
|
62 |
+
|
63 |
+
def get_pairwise_patch_error(self, source, nnf):
|
64 |
+
batch_size = source.shape[0]//2
|
65 |
+
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
|
66 |
+
source_a, nnf_a = source[0::2].copy(), nnf[0::2].copy()
|
67 |
+
source_b, nnf_b = source[1::2].copy(), nnf[1::2].copy()
|
68 |
+
pairwise_patch_error_kernel(
|
69 |
+
self.grid + (batch_size,),
|
70 |
+
self.block,
|
71 |
+
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source_a, nnf_a, source_b, nnf_b, error)
|
72 |
+
)
|
73 |
+
error = error.repeat(2, axis=0)
|
74 |
+
return error
|
75 |
+
|
76 |
+
def get_error(self, source_guide, target_guide, source_style, target_style, nnf):
|
77 |
+
error_guide = self.get_patch_error(source_guide, nnf, target_guide)
|
78 |
+
if self.use_mean_target_style:
|
79 |
+
target_style = self.apply_nnf_to_image(nnf, source_style)
|
80 |
+
target_style = target_style.mean(axis=0, keepdims=True)
|
81 |
+
target_style = target_style.repeat(source_guide.shape[0], axis=0)
|
82 |
+
if self.use_pairwise_patch_error:
|
83 |
+
error_style = self.get_pairwise_patch_error(source_style, nnf)
|
84 |
+
else:
|
85 |
+
error_style = self.get_patch_error(source_style, nnf, target_style)
|
86 |
+
error = error_guide * self.guide_weight + error_style
|
87 |
+
return error
|
88 |
+
|
89 |
+
def clamp_bound(self, nnf):
|
90 |
+
nnf[:,:,:,0] = cp.clip(nnf[:,:,:,0], 0, self.height-1)
|
91 |
+
nnf[:,:,:,1] = cp.clip(nnf[:,:,:,1], 0, self.width-1)
|
92 |
+
return nnf
|
93 |
+
|
94 |
+
def random_step(self, nnf, r):
|
95 |
+
batch_size = nnf.shape[0]
|
96 |
+
step = cp.random.randint(-r, r+1, size=(batch_size, self.height, self.width, 2), dtype=cp.int32)
|
97 |
+
upd_nnf = self.clamp_bound(nnf + step)
|
98 |
+
return upd_nnf
|
99 |
+
|
100 |
+
def neighboor_step(self, nnf, d):
|
101 |
+
if d==0:
|
102 |
+
upd_nnf = cp.concatenate([nnf[:, :1, :], nnf[:, :-1, :]], axis=1)
|
103 |
+
upd_nnf[:, :, :, 0] += 1
|
104 |
+
elif d==1:
|
105 |
+
upd_nnf = cp.concatenate([nnf[:, :, :1], nnf[:, :, :-1]], axis=2)
|
106 |
+
upd_nnf[:, :, :, 1] += 1
|
107 |
+
elif d==2:
|
108 |
+
upd_nnf = cp.concatenate([nnf[:, 1:, :], nnf[:, -1:, :]], axis=1)
|
109 |
+
upd_nnf[:, :, :, 0] -= 1
|
110 |
+
elif d==3:
|
111 |
+
upd_nnf = cp.concatenate([nnf[:, :, 1:], nnf[:, :, -1:]], axis=2)
|
112 |
+
upd_nnf[:, :, :, 1] -= 1
|
113 |
+
upd_nnf = self.clamp_bound(upd_nnf)
|
114 |
+
return upd_nnf
|
115 |
+
|
116 |
+
def shift_nnf(self, nnf, d):
|
117 |
+
if d>0:
|
118 |
+
d = min(nnf.shape[0], d)
|
119 |
+
upd_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
|
120 |
+
else:
|
121 |
+
d = max(-nnf.shape[0], d)
|
122 |
+
upd_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
|
123 |
+
return upd_nnf
|
124 |
+
|
125 |
+
def track_step(self, nnf, d):
|
126 |
+
if self.use_pairwise_patch_error:
|
127 |
+
upd_nnf = cp.zeros_like(nnf)
|
128 |
+
upd_nnf[0::2] = self.shift_nnf(nnf[0::2], d)
|
129 |
+
upd_nnf[1::2] = self.shift_nnf(nnf[1::2], d)
|
130 |
+
else:
|
131 |
+
upd_nnf = self.shift_nnf(nnf, d)
|
132 |
+
return upd_nnf
|
133 |
+
|
134 |
+
def C(self, n, m):
|
135 |
+
# not used
|
136 |
+
c = 1
|
137 |
+
for i in range(1, n+1):
|
138 |
+
c *= i
|
139 |
+
for i in range(1, m+1):
|
140 |
+
c //= i
|
141 |
+
for i in range(1, n-m+1):
|
142 |
+
c //= i
|
143 |
+
return c
|
144 |
+
|
145 |
+
def bezier_step(self, nnf, r):
|
146 |
+
# not used
|
147 |
+
n = r * 2 - 1
|
148 |
+
upd_nnf = cp.zeros(shape=nnf.shape, dtype=cp.float32)
|
149 |
+
for i, d in enumerate(list(range(-r, 0)) + list(range(1, r+1))):
|
150 |
+
if d>0:
|
151 |
+
ctl_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
|
152 |
+
elif d<0:
|
153 |
+
ctl_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
|
154 |
+
upd_nnf += ctl_nnf * (self.C(n, i) / 2**n)
|
155 |
+
upd_nnf = self.clamp_bound(upd_nnf).astype(nnf.dtype)
|
156 |
+
return upd_nnf
|
157 |
+
|
158 |
+
def update(self, source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf):
|
159 |
+
upd_err = self.get_error(source_guide, target_guide, source_style, target_style, upd_nnf)
|
160 |
+
upd_idx = (upd_err < err)
|
161 |
+
nnf[upd_idx] = upd_nnf[upd_idx]
|
162 |
+
err[upd_idx] = upd_err[upd_idx]
|
163 |
+
return nnf, err
|
164 |
+
|
165 |
+
def propagation(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
166 |
+
for d in cp.random.permutation(4):
|
167 |
+
upd_nnf = self.neighboor_step(nnf, d)
|
168 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
169 |
+
return nnf, err
|
170 |
+
|
171 |
+
def random_search(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
172 |
+
for i in range(self.random_search_steps):
|
173 |
+
upd_nnf = self.random_step(nnf, self.random_search_range)
|
174 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
175 |
+
return nnf, err
|
176 |
+
|
177 |
+
def track(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
178 |
+
for d in range(1, self.tracking_window_size + 1):
|
179 |
+
upd_nnf = self.track_step(nnf, d)
|
180 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
181 |
+
upd_nnf = self.track_step(nnf, -d)
|
182 |
+
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
|
183 |
+
return nnf, err
|
184 |
+
|
185 |
+
def iteration(self, source_guide, target_guide, source_style, target_style, nnf, err):
|
186 |
+
nnf, err = self.propagation(source_guide, target_guide, source_style, target_style, nnf, err)
|
187 |
+
nnf, err = self.random_search(source_guide, target_guide, source_style, target_style, nnf, err)
|
188 |
+
nnf, err = self.track(source_guide, target_guide, source_style, target_style, nnf, err)
|
189 |
+
return nnf, err
|
190 |
+
|
191 |
+
def estimate_nnf(self, source_guide, target_guide, source_style, nnf):
|
192 |
+
with cp.cuda.Device(self.gpu_id):
|
193 |
+
source_guide = self.pad_image(source_guide)
|
194 |
+
target_guide = self.pad_image(target_guide)
|
195 |
+
source_style = self.pad_image(source_style)
|
196 |
+
for it in range(self.num_iter):
|
197 |
+
self.patch_size = self.patch_size_list[it]
|
198 |
+
target_style = self.apply_nnf_to_image(nnf, source_style)
|
199 |
+
err = self.get_error(source_guide, target_guide, source_style, target_style, nnf)
|
200 |
+
nnf, err = self.iteration(source_guide, target_guide, source_style, target_style, nnf, err)
|
201 |
+
target_style = self.unpad_image(self.apply_nnf_to_image(nnf, source_style))
|
202 |
+
return nnf, target_style
|
203 |
+
|
204 |
+
|
205 |
+
class PyramidPatchMatcher:
|
206 |
+
def __init__(
|
207 |
+
self, image_height, image_width, channel, minimum_patch_size,
|
208 |
+
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
|
209 |
+
use_mean_target_style=False, use_pairwise_patch_error=False,
|
210 |
+
tracking_window_size=0,
|
211 |
+
initialize="identity"
|
212 |
+
):
|
213 |
+
maximum_patch_size = minimum_patch_size + (num_iter - 1) * 2
|
214 |
+
self.pyramid_level = int(np.log2(min(image_height, image_width) / maximum_patch_size))
|
215 |
+
self.pyramid_heights = []
|
216 |
+
self.pyramid_widths = []
|
217 |
+
self.patch_matchers = []
|
218 |
+
self.minimum_patch_size = minimum_patch_size
|
219 |
+
self.num_iter = num_iter
|
220 |
+
self.gpu_id = gpu_id
|
221 |
+
self.initialize = initialize
|
222 |
+
for level in range(self.pyramid_level):
|
223 |
+
height = image_height//(2**(self.pyramid_level - 1 - level))
|
224 |
+
width = image_width//(2**(self.pyramid_level - 1 - level))
|
225 |
+
self.pyramid_heights.append(height)
|
226 |
+
self.pyramid_widths.append(width)
|
227 |
+
self.patch_matchers.append(PatchMatcher(
|
228 |
+
height, width, channel, minimum_patch_size=minimum_patch_size,
|
229 |
+
threads_per_block=threads_per_block, num_iter=num_iter, gpu_id=gpu_id, guide_weight=guide_weight,
|
230 |
+
use_mean_target_style=use_mean_target_style, use_pairwise_patch_error=use_pairwise_patch_error,
|
231 |
+
tracking_window_size=tracking_window_size
|
232 |
+
))
|
233 |
+
|
234 |
+
def resample_image(self, images, level):
|
235 |
+
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
|
236 |
+
images = images.get()
|
237 |
+
images_resample = []
|
238 |
+
for image in images:
|
239 |
+
image_resample = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
|
240 |
+
images_resample.append(image_resample)
|
241 |
+
images_resample = cp.array(np.stack(images_resample), dtype=cp.float32)
|
242 |
+
return images_resample
|
243 |
+
|
244 |
+
def initialize_nnf(self, batch_size):
|
245 |
+
if self.initialize == "random":
|
246 |
+
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
|
247 |
+
nnf = cp.stack([
|
248 |
+
cp.random.randint(0, height, (batch_size, height, width), dtype=cp.int32),
|
249 |
+
cp.random.randint(0, width, (batch_size, height, width), dtype=cp.int32)
|
250 |
+
], axis=3)
|
251 |
+
elif self.initialize == "identity":
|
252 |
+
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
|
253 |
+
nnf = cp.stack([
|
254 |
+
cp.repeat(cp.arange(height), width).reshape(height, width),
|
255 |
+
cp.tile(cp.arange(width), height).reshape(height, width)
|
256 |
+
], axis=2)
|
257 |
+
nnf = cp.stack([nnf] * batch_size)
|
258 |
+
else:
|
259 |
+
raise NotImplementedError()
|
260 |
+
return nnf
|
261 |
+
|
262 |
+
def update_nnf(self, nnf, level):
|
263 |
+
# upscale
|
264 |
+
nnf = nnf.repeat(2, axis=1).repeat(2, axis=2) * 2
|
265 |
+
nnf[:,[i for i in range(nnf.shape[0]) if i&1],:,0] += 1
|
266 |
+
nnf[:,:,[i for i in range(nnf.shape[0]) if i&1],1] += 1
|
267 |
+
# check if scale is 2
|
268 |
+
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
|
269 |
+
if height != nnf.shape[0] * 2 or width != nnf.shape[1] * 2:
|
270 |
+
nnf = nnf.get().astype(np.float32)
|
271 |
+
nnf = [cv2.resize(n, (width, height), interpolation=cv2.INTER_LINEAR) for n in nnf]
|
272 |
+
nnf = cp.array(np.stack(nnf), dtype=cp.int32)
|
273 |
+
nnf = self.patch_matchers[level].clamp_bound(nnf)
|
274 |
+
return nnf
|
275 |
+
|
276 |
+
def apply_nnf_to_image(self, nnf, image):
|
277 |
+
with cp.cuda.Device(self.gpu_id):
|
278 |
+
image = self.patch_matchers[-1].pad_image(image)
|
279 |
+
image = self.patch_matchers[-1].apply_nnf_to_image(nnf, image)
|
280 |
+
return image
|
281 |
+
|
282 |
+
def estimate_nnf(self, source_guide, target_guide, source_style):
|
283 |
+
with cp.cuda.Device(self.gpu_id):
|
284 |
+
if not isinstance(source_guide, cp.ndarray):
|
285 |
+
source_guide = cp.array(source_guide, dtype=cp.float32)
|
286 |
+
if not isinstance(target_guide, cp.ndarray):
|
287 |
+
target_guide = cp.array(target_guide, dtype=cp.float32)
|
288 |
+
if not isinstance(source_style, cp.ndarray):
|
289 |
+
source_style = cp.array(source_style, dtype=cp.float32)
|
290 |
+
for level in range(self.pyramid_level):
|
291 |
+
nnf = self.initialize_nnf(source_guide.shape[0]) if level==0 else self.update_nnf(nnf, level)
|
292 |
+
source_guide_ = self.resample_image(source_guide, level)
|
293 |
+
target_guide_ = self.resample_image(target_guide, level)
|
294 |
+
source_style_ = self.resample_image(source_style, level)
|
295 |
+
nnf, target_style = self.patch_matchers[level].estimate_nnf(
|
296 |
+
source_guide_, target_guide_, source_style_, nnf
|
297 |
+
)
|
298 |
+
return nnf.get(), target_style.get()
|
diffsynth/extensions/FastBlend/runners/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .accurate import AccurateModeRunner
|
2 |
+
from .fast import FastModeRunner
|
3 |
+
from .balanced import BalancedModeRunner
|
4 |
+
from .interpolation import InterpolationModeRunner, InterpolationModeSingleFrameRunner
|
diffsynth/extensions/FastBlend/runners/accurate.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class AccurateModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Accurate Mode", save_path=None):
|
13 |
+
patch_match_engine = PyramidPatchMatcher(
|
14 |
+
image_height=frames_style[0].shape[0],
|
15 |
+
image_width=frames_style[0].shape[1],
|
16 |
+
channel=3,
|
17 |
+
use_mean_target_style=True,
|
18 |
+
**ebsynth_config
|
19 |
+
)
|
20 |
+
# run
|
21 |
+
n = len(frames_style)
|
22 |
+
for target in tqdm(range(n), desc=desc):
|
23 |
+
l, r = max(target - window_size, 0), min(target + window_size + 1, n)
|
24 |
+
remapped_frames = []
|
25 |
+
for i in range(l, r, batch_size):
|
26 |
+
j = min(i + batch_size, r)
|
27 |
+
source_guide = np.stack([frames_guide[source] for source in range(i, j)])
|
28 |
+
target_guide = np.stack([frames_guide[target]] * (j - i))
|
29 |
+
source_style = np.stack([frames_style[source] for source in range(i, j)])
|
30 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
31 |
+
remapped_frames.append(target_style)
|
32 |
+
frame = np.concatenate(remapped_frames, axis=0).mean(axis=0)
|
33 |
+
frame = frame.clip(0, 255).astype("uint8")
|
34 |
+
if save_path is not None:
|
35 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
diffsynth/extensions/FastBlend/runners/balanced.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class BalancedModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Balanced Mode", save_path=None):
|
13 |
+
patch_match_engine = PyramidPatchMatcher(
|
14 |
+
image_height=frames_style[0].shape[0],
|
15 |
+
image_width=frames_style[0].shape[1],
|
16 |
+
channel=3,
|
17 |
+
**ebsynth_config
|
18 |
+
)
|
19 |
+
# tasks
|
20 |
+
n = len(frames_style)
|
21 |
+
tasks = []
|
22 |
+
for target in range(n):
|
23 |
+
for source in range(target - window_size, target + window_size + 1):
|
24 |
+
if source >= 0 and source < n and source != target:
|
25 |
+
tasks.append((source, target))
|
26 |
+
# run
|
27 |
+
frames = [(None, 1) for i in range(n)]
|
28 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
29 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
30 |
+
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch])
|
31 |
+
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch])
|
32 |
+
source_style = np.stack([frames_style[source] for source, target in tasks_batch])
|
33 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
34 |
+
for (source, target), result in zip(tasks_batch, target_style):
|
35 |
+
frame, weight = frames[target]
|
36 |
+
if frame is None:
|
37 |
+
frame = frames_style[target]
|
38 |
+
frames[target] = (
|
39 |
+
frame * (weight / (weight + 1)) + result / (weight + 1),
|
40 |
+
weight + 1
|
41 |
+
)
|
42 |
+
if weight + 1 == min(n, target + window_size + 1) - max(0, target - window_size):
|
43 |
+
frame = frame.clip(0, 255).astype("uint8")
|
44 |
+
if save_path is not None:
|
45 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
46 |
+
frames[target] = (None, 1)
|
diffsynth/extensions/FastBlend/runners/fast.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import functools, os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class TableManager:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def task_list(self, n):
|
13 |
+
tasks = []
|
14 |
+
max_level = 1
|
15 |
+
while (1<<max_level)<=n:
|
16 |
+
max_level += 1
|
17 |
+
for i in range(n):
|
18 |
+
j = i
|
19 |
+
for level in range(max_level):
|
20 |
+
if i&(1<<level):
|
21 |
+
continue
|
22 |
+
j |= 1<<level
|
23 |
+
if j>=n:
|
24 |
+
break
|
25 |
+
meta_data = {
|
26 |
+
"source": i,
|
27 |
+
"target": j,
|
28 |
+
"level": level + 1
|
29 |
+
}
|
30 |
+
tasks.append(meta_data)
|
31 |
+
tasks.sort(key=functools.cmp_to_key(lambda u, v: u["level"]-v["level"]))
|
32 |
+
return tasks
|
33 |
+
|
34 |
+
def build_remapping_table(self, frames_guide, frames_style, patch_match_engine, batch_size, desc=""):
|
35 |
+
n = len(frames_guide)
|
36 |
+
tasks = self.task_list(n)
|
37 |
+
remapping_table = [[(frames_style[i], 1)] for i in range(n)]
|
38 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
39 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
40 |
+
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch])
|
41 |
+
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch])
|
42 |
+
source_style = np.stack([frames_style[task["source"]] for task in tasks_batch])
|
43 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
44 |
+
for task, result in zip(tasks_batch, target_style):
|
45 |
+
target, level = task["target"], task["level"]
|
46 |
+
if len(remapping_table[target])==level:
|
47 |
+
remapping_table[target].append((result, 1))
|
48 |
+
else:
|
49 |
+
frame, weight = remapping_table[target][level]
|
50 |
+
remapping_table[target][level] = (
|
51 |
+
frame * (weight / (weight + 1)) + result / (weight + 1),
|
52 |
+
weight + 1
|
53 |
+
)
|
54 |
+
return remapping_table
|
55 |
+
|
56 |
+
def remapping_table_to_blending_table(self, table):
|
57 |
+
for i in range(len(table)):
|
58 |
+
for j in range(1, len(table[i])):
|
59 |
+
frame_1, weight_1 = table[i][j-1]
|
60 |
+
frame_2, weight_2 = table[i][j]
|
61 |
+
frame = (frame_1 + frame_2) / 2
|
62 |
+
weight = weight_1 + weight_2
|
63 |
+
table[i][j] = (frame, weight)
|
64 |
+
return table
|
65 |
+
|
66 |
+
def tree_query(self, leftbound, rightbound):
|
67 |
+
node_list = []
|
68 |
+
node_index = rightbound
|
69 |
+
while node_index>=leftbound:
|
70 |
+
node_level = 0
|
71 |
+
while (1<<node_level)&node_index and node_index-(1<<node_level+1)+1>=leftbound:
|
72 |
+
node_level += 1
|
73 |
+
node_list.append((node_index, node_level))
|
74 |
+
node_index -= 1<<node_level
|
75 |
+
return node_list
|
76 |
+
|
77 |
+
def process_window_sum(self, frames_guide, blending_table, patch_match_engine, window_size, batch_size, desc=""):
|
78 |
+
n = len(blending_table)
|
79 |
+
tasks = []
|
80 |
+
frames_result = []
|
81 |
+
for target in range(n):
|
82 |
+
node_list = self.tree_query(max(target-window_size, 0), target)
|
83 |
+
for source, level in node_list:
|
84 |
+
if source!=target:
|
85 |
+
meta_data = {
|
86 |
+
"source": source,
|
87 |
+
"target": target,
|
88 |
+
"level": level
|
89 |
+
}
|
90 |
+
tasks.append(meta_data)
|
91 |
+
else:
|
92 |
+
frames_result.append(blending_table[target][level])
|
93 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc):
|
94 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
95 |
+
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch])
|
96 |
+
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch])
|
97 |
+
source_style = np.stack([blending_table[task["source"]][task["level"]][0] for task in tasks_batch])
|
98 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
99 |
+
for task, frame_2 in zip(tasks_batch, target_style):
|
100 |
+
source, target, level = task["source"], task["target"], task["level"]
|
101 |
+
frame_1, weight_1 = frames_result[target]
|
102 |
+
weight_2 = blending_table[source][level][1]
|
103 |
+
weight = weight_1 + weight_2
|
104 |
+
frame = frame_1 * (weight_1 / weight) + frame_2 * (weight_2 / weight)
|
105 |
+
frames_result[target] = (frame, weight)
|
106 |
+
return frames_result
|
107 |
+
|
108 |
+
|
109 |
+
class FastModeRunner:
|
110 |
+
def __init__(self):
|
111 |
+
pass
|
112 |
+
|
113 |
+
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, save_path=None):
|
114 |
+
frames_guide = frames_guide.raw_data()
|
115 |
+
frames_style = frames_style.raw_data()
|
116 |
+
table_manager = TableManager()
|
117 |
+
patch_match_engine = PyramidPatchMatcher(
|
118 |
+
image_height=frames_style[0].shape[0],
|
119 |
+
image_width=frames_style[0].shape[1],
|
120 |
+
channel=3,
|
121 |
+
**ebsynth_config
|
122 |
+
)
|
123 |
+
# left part
|
124 |
+
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="Fast Mode Step 1/4")
|
125 |
+
table_l = table_manager.remapping_table_to_blending_table(table_l)
|
126 |
+
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 2/4")
|
127 |
+
# right part
|
128 |
+
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="Fast Mode Step 3/4")
|
129 |
+
table_r = table_manager.remapping_table_to_blending_table(table_r)
|
130 |
+
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 4/4")[::-1]
|
131 |
+
# merge
|
132 |
+
frames = []
|
133 |
+
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r):
|
134 |
+
weight_m = -1
|
135 |
+
weight = weight_l + weight_m + weight_r
|
136 |
+
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight)
|
137 |
+
frames.append(frame)
|
138 |
+
frames = [frame.clip(0, 255).astype("uint8") for frame in frames]
|
139 |
+
if save_path is not None:
|
140 |
+
for target, frame in enumerate(frames):
|
141 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))
|
diffsynth/extensions/FastBlend/runners/interpolation.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..patch_match import PyramidPatchMatcher
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class InterpolationModeRunner:
|
9 |
+
def __init__(self):
|
10 |
+
pass
|
11 |
+
|
12 |
+
def get_index_dict(self, index_style):
|
13 |
+
index_dict = {}
|
14 |
+
for i, index in enumerate(index_style):
|
15 |
+
index_dict[index] = i
|
16 |
+
return index_dict
|
17 |
+
|
18 |
+
def get_weight(self, l, m, r):
|
19 |
+
weight_l, weight_r = abs(m - r), abs(m - l)
|
20 |
+
if weight_l + weight_r == 0:
|
21 |
+
weight_l, weight_r = 0.5, 0.5
|
22 |
+
else:
|
23 |
+
weight_l, weight_r = weight_l / (weight_l + weight_r), weight_r / (weight_l + weight_r)
|
24 |
+
return weight_l, weight_r
|
25 |
+
|
26 |
+
def get_task_group(self, index_style, n):
|
27 |
+
task_group = []
|
28 |
+
index_style = sorted(index_style)
|
29 |
+
# first frame
|
30 |
+
if index_style[0]>0:
|
31 |
+
tasks = []
|
32 |
+
for m in range(index_style[0]):
|
33 |
+
tasks.append((index_style[0], m, index_style[0]))
|
34 |
+
task_group.append(tasks)
|
35 |
+
# middle frames
|
36 |
+
for l, r in zip(index_style[:-1], index_style[1:]):
|
37 |
+
tasks = []
|
38 |
+
for m in range(l, r):
|
39 |
+
tasks.append((l, m, r))
|
40 |
+
task_group.append(tasks)
|
41 |
+
# last frame
|
42 |
+
tasks = []
|
43 |
+
for m in range(index_style[-1], n):
|
44 |
+
tasks.append((index_style[-1], m, index_style[-1]))
|
45 |
+
task_group.append(tasks)
|
46 |
+
return task_group
|
47 |
+
|
48 |
+
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
|
49 |
+
patch_match_engine = PyramidPatchMatcher(
|
50 |
+
image_height=frames_style[0].shape[0],
|
51 |
+
image_width=frames_style[0].shape[1],
|
52 |
+
channel=3,
|
53 |
+
use_mean_target_style=False,
|
54 |
+
use_pairwise_patch_error=True,
|
55 |
+
**ebsynth_config
|
56 |
+
)
|
57 |
+
# task
|
58 |
+
index_dict = self.get_index_dict(index_style)
|
59 |
+
task_group = self.get_task_group(index_style, len(frames_guide))
|
60 |
+
# run
|
61 |
+
for tasks in task_group:
|
62 |
+
index_start, index_end = min([i[1] for i in tasks]), max([i[1] for i in tasks])
|
63 |
+
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=f"Rendering frames {index_start}...{index_end}"):
|
64 |
+
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
|
65 |
+
source_guide, target_guide, source_style = [], [], []
|
66 |
+
for l, m, r in tasks_batch:
|
67 |
+
# l -> m
|
68 |
+
source_guide.append(frames_guide[l])
|
69 |
+
target_guide.append(frames_guide[m])
|
70 |
+
source_style.append(frames_style[index_dict[l]])
|
71 |
+
# r -> m
|
72 |
+
source_guide.append(frames_guide[r])
|
73 |
+
target_guide.append(frames_guide[m])
|
74 |
+
source_style.append(frames_style[index_dict[r]])
|
75 |
+
source_guide = np.stack(source_guide)
|
76 |
+
target_guide = np.stack(target_guide)
|
77 |
+
source_style = np.stack(source_style)
|
78 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
79 |
+
if save_path is not None:
|
80 |
+
for frame_l, frame_r, (l, m, r) in zip(target_style[0::2], target_style[1::2], tasks_batch):
|
81 |
+
weight_l, weight_r = self.get_weight(l, m, r)
|
82 |
+
frame = frame_l * weight_l + frame_r * weight_r
|
83 |
+
frame = frame.clip(0, 255).astype("uint8")
|
84 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % m))
|
85 |
+
|
86 |
+
|
87 |
+
class InterpolationModeSingleFrameRunner:
|
88 |
+
def __init__(self):
|
89 |
+
pass
|
90 |
+
|
91 |
+
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
|
92 |
+
# check input
|
93 |
+
tracking_window_size = ebsynth_config["tracking_window_size"]
|
94 |
+
if tracking_window_size * 2 >= batch_size:
|
95 |
+
raise ValueError("batch_size should be larger than track_window_size * 2")
|
96 |
+
frame_style = frames_style[0]
|
97 |
+
frame_guide = frames_guide[index_style[0]]
|
98 |
+
patch_match_engine = PyramidPatchMatcher(
|
99 |
+
image_height=frame_style.shape[0],
|
100 |
+
image_width=frame_style.shape[1],
|
101 |
+
channel=3,
|
102 |
+
**ebsynth_config
|
103 |
+
)
|
104 |
+
# run
|
105 |
+
frame_id, n = 0, len(frames_guide)
|
106 |
+
for i in tqdm(range(0, n, batch_size - tracking_window_size * 2), desc=f"Rendering frames 0...{n}"):
|
107 |
+
if i + batch_size > n:
|
108 |
+
l, r = max(n - batch_size, 0), n
|
109 |
+
else:
|
110 |
+
l, r = i, i + batch_size
|
111 |
+
source_guide = np.stack([frame_guide] * (r-l))
|
112 |
+
target_guide = np.stack([frames_guide[i] for i in range(l, r)])
|
113 |
+
source_style = np.stack([frame_style] * (r-l))
|
114 |
+
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
|
115 |
+
for i, frame in zip(range(l, r), target_style):
|
116 |
+
if i==frame_id:
|
117 |
+
frame = frame.clip(0, 255).astype("uint8")
|
118 |
+
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % frame_id))
|
119 |
+
frame_id += 1
|
120 |
+
if r < n and r-frame_id <= tracking_window_size:
|
121 |
+
break
|
diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .blip_pretrain import *
|
diffsynth/extensions/ImageQualityMetric/BLIP/blip.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
'''
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
from urllib.parse import urlparse
|
11 |
+
from timm.models.hub import download_cached_file
|
12 |
+
from transformers import BertTokenizer
|
13 |
+
from .vit import VisionTransformer, interpolate_pos_embed
|
14 |
+
|
15 |
+
|
16 |
+
def default_bert():
|
17 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
project_root = os.path.abspath(os.path.join(current_dir, '../../../../'))
|
19 |
+
model_path = os.path.join(project_root, 'models', 'QualityMetric')
|
20 |
+
return os.path.join(model_path, "bert-base-uncased")
|
21 |
+
|
22 |
+
|
23 |
+
def init_tokenizer(bert_model_path):
|
24 |
+
tokenizer = BertTokenizer.from_pretrained(bert_model_path)
|
25 |
+
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
26 |
+
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
27 |
+
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
28 |
+
return tokenizer
|
29 |
+
|
30 |
+
|
31 |
+
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
32 |
+
|
33 |
+
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
34 |
+
if vit=='base':
|
35 |
+
vision_width = 768
|
36 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
37 |
+
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
38 |
+
drop_path_rate=0 or drop_path_rate
|
39 |
+
)
|
40 |
+
elif vit=='large':
|
41 |
+
vision_width = 1024
|
42 |
+
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
43 |
+
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
44 |
+
drop_path_rate=0.1 or drop_path_rate
|
45 |
+
)
|
46 |
+
return visual_encoder, vision_width
|
47 |
+
|
48 |
+
|
49 |
+
def is_url(url_or_filename):
|
50 |
+
parsed = urlparse(url_or_filename)
|
51 |
+
return parsed.scheme in ("http", "https")
|
52 |
+
|
53 |
+
def load_checkpoint(model,url_or_filename):
|
54 |
+
if is_url(url_or_filename):
|
55 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
56 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
57 |
+
elif os.path.isfile(url_or_filename):
|
58 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
59 |
+
else:
|
60 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
61 |
+
|
62 |
+
state_dict = checkpoint['model']
|
63 |
+
|
64 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
65 |
+
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
66 |
+
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
67 |
+
model.visual_encoder_m)
|
68 |
+
for key in model.state_dict().keys():
|
69 |
+
if key in state_dict.keys():
|
70 |
+
if state_dict[key].shape!=model.state_dict()[key].shape:
|
71 |
+
print(key, ": ", state_dict[key].shape, ', ', model.state_dict()[key].shape)
|
72 |
+
del state_dict[key]
|
73 |
+
|
74 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
75 |
+
print('load checkpoint from %s'%url_or_filename)
|
76 |
+
return model,msg
|
77 |
+
|
diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
'''
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
transformers.logging.set_verbosity_error()
|
7 |
+
|
8 |
+
from torch import nn
|
9 |
+
import os
|
10 |
+
from .med import BertConfig, BertModel
|
11 |
+
from .blip import create_vit, init_tokenizer
|
12 |
+
|
13 |
+
class BLIP_Pretrain(nn.Module):
|
14 |
+
def __init__(self,
|
15 |
+
med_config = "med_config.json",
|
16 |
+
image_size = 224,
|
17 |
+
vit = 'base',
|
18 |
+
vit_grad_ckpt = False,
|
19 |
+
vit_ckpt_layer = 0,
|
20 |
+
embed_dim = 256,
|
21 |
+
queue_size = 57600,
|
22 |
+
momentum = 0.995,
|
23 |
+
bert_model_path = ""
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
Args:
|
27 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
28 |
+
image_size (int): input image size
|
29 |
+
vit (str): model size of vision transformer
|
30 |
+
"""
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
|
34 |
+
|
35 |
+
self.tokenizer = init_tokenizer(bert_model_path)
|
36 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
37 |
+
encoder_config.encoder_width = vision_width
|
38 |
+
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
39 |
+
|
40 |
+
text_width = self.text_encoder.config.hidden_size
|
41 |
+
|
42 |
+
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
43 |
+
self.text_proj = nn.Linear(text_width, embed_dim)
|
44 |
+
|
diffsynth/extensions/ImageQualityMetric/BLIP/med.py
ADDED
@@ -0,0 +1,947 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
* Based on huggingface code base
|
4 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
5 |
+
'''
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import Tensor, device, nn
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn import CrossEntropyLoss
|
15 |
+
|
16 |
+
from transformers.activations import ACT2FN
|
17 |
+
from transformers.file_utils import (
|
18 |
+
ModelOutput,
|
19 |
+
)
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
CausalLMOutputWithCrossAttentions,
|
24 |
+
MaskedLMOutput,
|
25 |
+
MultipleChoiceModelOutput,
|
26 |
+
NextSentencePredictorOutput,
|
27 |
+
QuestionAnsweringModelOutput,
|
28 |
+
SequenceClassifierOutput,
|
29 |
+
TokenClassifierOutput,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import (
|
32 |
+
PreTrainedModel,
|
33 |
+
apply_chunking_to_forward,
|
34 |
+
find_pruneable_heads_and_indices,
|
35 |
+
prune_linear_layer,
|
36 |
+
)
|
37 |
+
from transformers.utils import logging
|
38 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
class BertEmbeddings(nn.Module):
|
45 |
+
"""Construct the embeddings from word and position embeddings."""
|
46 |
+
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__()
|
49 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
50 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
51 |
+
|
52 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
53 |
+
# any TensorFlow checkpoint file
|
54 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
55 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
56 |
+
|
57 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
58 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
59 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
60 |
+
|
61 |
+
self.config = config
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
65 |
+
):
|
66 |
+
if input_ids is not None:
|
67 |
+
input_shape = input_ids.size()
|
68 |
+
else:
|
69 |
+
input_shape = inputs_embeds.size()[:-1]
|
70 |
+
|
71 |
+
seq_length = input_shape[1]
|
72 |
+
|
73 |
+
if position_ids is None:
|
74 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
75 |
+
|
76 |
+
if inputs_embeds is None:
|
77 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
78 |
+
|
79 |
+
embeddings = inputs_embeds
|
80 |
+
|
81 |
+
if self.position_embedding_type == "absolute":
|
82 |
+
position_embeddings = self.position_embeddings(position_ids)
|
83 |
+
embeddings += position_embeddings
|
84 |
+
embeddings = self.LayerNorm(embeddings)
|
85 |
+
embeddings = self.dropout(embeddings)
|
86 |
+
return embeddings
|
87 |
+
|
88 |
+
|
89 |
+
class BertSelfAttention(nn.Module):
|
90 |
+
def __init__(self, config, is_cross_attention):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
94 |
+
raise ValueError(
|
95 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
96 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
97 |
+
)
|
98 |
+
|
99 |
+
self.num_attention_heads = config.num_attention_heads
|
100 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
101 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
102 |
+
|
103 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
104 |
+
if is_cross_attention:
|
105 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
106 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
107 |
+
else:
|
108 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
109 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
110 |
+
|
111 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
112 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
113 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
114 |
+
self.max_position_embeddings = config.max_position_embeddings
|
115 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
116 |
+
self.save_attention = False
|
117 |
+
|
118 |
+
def save_attn_gradients(self, attn_gradients):
|
119 |
+
self.attn_gradients = attn_gradients
|
120 |
+
|
121 |
+
def get_attn_gradients(self):
|
122 |
+
return self.attn_gradients
|
123 |
+
|
124 |
+
def save_attention_map(self, attention_map):
|
125 |
+
self.attention_map = attention_map
|
126 |
+
|
127 |
+
def get_attention_map(self):
|
128 |
+
return self.attention_map
|
129 |
+
|
130 |
+
def transpose_for_scores(self, x):
|
131 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
132 |
+
x = x.view(*new_x_shape)
|
133 |
+
return x.permute(0, 2, 1, 3)
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
hidden_states,
|
138 |
+
attention_mask=None,
|
139 |
+
head_mask=None,
|
140 |
+
encoder_hidden_states=None,
|
141 |
+
encoder_attention_mask=None,
|
142 |
+
past_key_value=None,
|
143 |
+
output_attentions=False,
|
144 |
+
):
|
145 |
+
mixed_query_layer = self.query(hidden_states)
|
146 |
+
|
147 |
+
# If this is instantiated as a cross-attention module, the keys
|
148 |
+
# and values come from an encoder; the attention mask needs to be
|
149 |
+
# such that the encoder's padding tokens are not attended to.
|
150 |
+
is_cross_attention = encoder_hidden_states is not None
|
151 |
+
|
152 |
+
if is_cross_attention:
|
153 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
154 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
155 |
+
attention_mask = encoder_attention_mask
|
156 |
+
elif past_key_value is not None:
|
157 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
158 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
159 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
160 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
161 |
+
else:
|
162 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
163 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
164 |
+
|
165 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
166 |
+
|
167 |
+
past_key_value = (key_layer, value_layer)
|
168 |
+
|
169 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
170 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
171 |
+
|
172 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
173 |
+
seq_length = hidden_states.size()[1]
|
174 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
175 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
176 |
+
distance = position_ids_l - position_ids_r
|
177 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
178 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
179 |
+
|
180 |
+
if self.position_embedding_type == "relative_key":
|
181 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
182 |
+
attention_scores = attention_scores + relative_position_scores
|
183 |
+
elif self.position_embedding_type == "relative_key_query":
|
184 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
185 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
186 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
187 |
+
|
188 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
189 |
+
if attention_mask is not None:
|
190 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
191 |
+
attention_scores = attention_scores + attention_mask
|
192 |
+
|
193 |
+
# Normalize the attention scores to probabilities.
|
194 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
195 |
+
|
196 |
+
if is_cross_attention and self.save_attention:
|
197 |
+
self.save_attention_map(attention_probs)
|
198 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
199 |
+
|
200 |
+
# This is actually dropping out entire tokens to attend to, which might
|
201 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
202 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
203 |
+
|
204 |
+
# Mask heads if we want to
|
205 |
+
if head_mask is not None:
|
206 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
207 |
+
|
208 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
209 |
+
|
210 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
211 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
212 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
213 |
+
|
214 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
215 |
+
|
216 |
+
outputs = outputs + (past_key_value,)
|
217 |
+
return outputs
|
218 |
+
|
219 |
+
|
220 |
+
class BertSelfOutput(nn.Module):
|
221 |
+
def __init__(self, config):
|
222 |
+
super().__init__()
|
223 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
224 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
225 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
226 |
+
|
227 |
+
def forward(self, hidden_states, input_tensor):
|
228 |
+
hidden_states = self.dense(hidden_states)
|
229 |
+
hidden_states = self.dropout(hidden_states)
|
230 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
231 |
+
return hidden_states
|
232 |
+
|
233 |
+
|
234 |
+
class BertAttention(nn.Module):
|
235 |
+
def __init__(self, config, is_cross_attention=False):
|
236 |
+
super().__init__()
|
237 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
238 |
+
self.output = BertSelfOutput(config)
|
239 |
+
self.pruned_heads = set()
|
240 |
+
|
241 |
+
def prune_heads(self, heads):
|
242 |
+
if len(heads) == 0:
|
243 |
+
return
|
244 |
+
heads, index = find_pruneable_heads_and_indices(
|
245 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
246 |
+
)
|
247 |
+
|
248 |
+
# Prune linear layers
|
249 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
250 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
251 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
252 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
253 |
+
|
254 |
+
# Update hyper params and store pruned heads
|
255 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
256 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
257 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_states,
|
262 |
+
attention_mask=None,
|
263 |
+
head_mask=None,
|
264 |
+
encoder_hidden_states=None,
|
265 |
+
encoder_attention_mask=None,
|
266 |
+
past_key_value=None,
|
267 |
+
output_attentions=False,
|
268 |
+
):
|
269 |
+
self_outputs = self.self(
|
270 |
+
hidden_states,
|
271 |
+
attention_mask,
|
272 |
+
head_mask,
|
273 |
+
encoder_hidden_states,
|
274 |
+
encoder_attention_mask,
|
275 |
+
past_key_value,
|
276 |
+
output_attentions,
|
277 |
+
)
|
278 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
279 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
280 |
+
return outputs
|
281 |
+
|
282 |
+
|
283 |
+
class BertIntermediate(nn.Module):
|
284 |
+
def __init__(self, config):
|
285 |
+
super().__init__()
|
286 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
287 |
+
if isinstance(config.hidden_act, str):
|
288 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
289 |
+
else:
|
290 |
+
self.intermediate_act_fn = config.hidden_act
|
291 |
+
|
292 |
+
def forward(self, hidden_states):
|
293 |
+
hidden_states = self.dense(hidden_states)
|
294 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class BertOutput(nn.Module):
|
299 |
+
def __init__(self, config):
|
300 |
+
super().__init__()
|
301 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
302 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
303 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
304 |
+
|
305 |
+
def forward(self, hidden_states, input_tensor):
|
306 |
+
hidden_states = self.dense(hidden_states)
|
307 |
+
hidden_states = self.dropout(hidden_states)
|
308 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
309 |
+
return hidden_states
|
310 |
+
|
311 |
+
|
312 |
+
class BertLayer(nn.Module):
|
313 |
+
def __init__(self, config, layer_num):
|
314 |
+
super().__init__()
|
315 |
+
self.config = config
|
316 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
317 |
+
self.seq_len_dim = 1
|
318 |
+
self.attention = BertAttention(config)
|
319 |
+
self.layer_num = layer_num
|
320 |
+
if self.config.add_cross_attention:
|
321 |
+
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
322 |
+
self.intermediate = BertIntermediate(config)
|
323 |
+
self.output = BertOutput(config)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=None,
|
329 |
+
head_mask=None,
|
330 |
+
encoder_hidden_states=None,
|
331 |
+
encoder_attention_mask=None,
|
332 |
+
past_key_value=None,
|
333 |
+
output_attentions=False,
|
334 |
+
mode=None,
|
335 |
+
):
|
336 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
337 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
338 |
+
self_attention_outputs = self.attention(
|
339 |
+
hidden_states,
|
340 |
+
attention_mask,
|
341 |
+
head_mask,
|
342 |
+
output_attentions=output_attentions,
|
343 |
+
past_key_value=self_attn_past_key_value,
|
344 |
+
)
|
345 |
+
attention_output = self_attention_outputs[0]
|
346 |
+
|
347 |
+
outputs = self_attention_outputs[1:-1]
|
348 |
+
present_key_value = self_attention_outputs[-1]
|
349 |
+
|
350 |
+
if mode=='multimodal':
|
351 |
+
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
352 |
+
|
353 |
+
cross_attention_outputs = self.crossattention(
|
354 |
+
attention_output,
|
355 |
+
attention_mask,
|
356 |
+
head_mask,
|
357 |
+
encoder_hidden_states,
|
358 |
+
encoder_attention_mask,
|
359 |
+
output_attentions=output_attentions,
|
360 |
+
)
|
361 |
+
attention_output = cross_attention_outputs[0]
|
362 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
363 |
+
layer_output = apply_chunking_to_forward(
|
364 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
365 |
+
)
|
366 |
+
outputs = (layer_output,) + outputs
|
367 |
+
|
368 |
+
outputs = outputs + (present_key_value,)
|
369 |
+
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
def feed_forward_chunk(self, attention_output):
|
373 |
+
intermediate_output = self.intermediate(attention_output)
|
374 |
+
layer_output = self.output(intermediate_output, attention_output)
|
375 |
+
return layer_output
|
376 |
+
|
377 |
+
|
378 |
+
class BertEncoder(nn.Module):
|
379 |
+
def __init__(self, config):
|
380 |
+
super().__init__()
|
381 |
+
self.config = config
|
382 |
+
self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
|
383 |
+
self.gradient_checkpointing = False
|
384 |
+
|
385 |
+
def forward(
|
386 |
+
self,
|
387 |
+
hidden_states,
|
388 |
+
attention_mask=None,
|
389 |
+
head_mask=None,
|
390 |
+
encoder_hidden_states=None,
|
391 |
+
encoder_attention_mask=None,
|
392 |
+
past_key_values=None,
|
393 |
+
use_cache=None,
|
394 |
+
output_attentions=False,
|
395 |
+
output_hidden_states=False,
|
396 |
+
return_dict=True,
|
397 |
+
mode='multimodal',
|
398 |
+
):
|
399 |
+
all_hidden_states = () if output_hidden_states else None
|
400 |
+
all_self_attentions = () if output_attentions else None
|
401 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
402 |
+
|
403 |
+
next_decoder_cache = () if use_cache else None
|
404 |
+
|
405 |
+
for i in range(self.config.num_hidden_layers):
|
406 |
+
layer_module = self.layer[i]
|
407 |
+
if output_hidden_states:
|
408 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
409 |
+
|
410 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
411 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
412 |
+
|
413 |
+
if self.gradient_checkpointing and self.training:
|
414 |
+
|
415 |
+
if use_cache:
|
416 |
+
logger.warn(
|
417 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
418 |
+
)
|
419 |
+
use_cache = False
|
420 |
+
|
421 |
+
def create_custom_forward(module):
|
422 |
+
def custom_forward(*inputs):
|
423 |
+
return module(*inputs, past_key_value, output_attentions)
|
424 |
+
|
425 |
+
return custom_forward
|
426 |
+
|
427 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
428 |
+
create_custom_forward(layer_module),
|
429 |
+
hidden_states,
|
430 |
+
attention_mask,
|
431 |
+
layer_head_mask,
|
432 |
+
encoder_hidden_states,
|
433 |
+
encoder_attention_mask,
|
434 |
+
mode=mode,
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
layer_outputs = layer_module(
|
438 |
+
hidden_states,
|
439 |
+
attention_mask,
|
440 |
+
layer_head_mask,
|
441 |
+
encoder_hidden_states,
|
442 |
+
encoder_attention_mask,
|
443 |
+
past_key_value,
|
444 |
+
output_attentions,
|
445 |
+
mode=mode,
|
446 |
+
)
|
447 |
+
|
448 |
+
hidden_states = layer_outputs[0]
|
449 |
+
if use_cache:
|
450 |
+
next_decoder_cache += (layer_outputs[-1],)
|
451 |
+
if output_attentions:
|
452 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
453 |
+
|
454 |
+
if output_hidden_states:
|
455 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return tuple(
|
459 |
+
v
|
460 |
+
for v in [
|
461 |
+
hidden_states,
|
462 |
+
next_decoder_cache,
|
463 |
+
all_hidden_states,
|
464 |
+
all_self_attentions,
|
465 |
+
all_cross_attentions,
|
466 |
+
]
|
467 |
+
if v is not None
|
468 |
+
)
|
469 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
470 |
+
last_hidden_state=hidden_states,
|
471 |
+
past_key_values=next_decoder_cache,
|
472 |
+
hidden_states=all_hidden_states,
|
473 |
+
attentions=all_self_attentions,
|
474 |
+
cross_attentions=all_cross_attentions,
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
class BertPooler(nn.Module):
|
479 |
+
def __init__(self, config):
|
480 |
+
super().__init__()
|
481 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
482 |
+
self.activation = nn.Tanh()
|
483 |
+
|
484 |
+
def forward(self, hidden_states):
|
485 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
486 |
+
# to the first token.
|
487 |
+
first_token_tensor = hidden_states[:, 0]
|
488 |
+
pooled_output = self.dense(first_token_tensor)
|
489 |
+
pooled_output = self.activation(pooled_output)
|
490 |
+
return pooled_output
|
491 |
+
|
492 |
+
|
493 |
+
class BertPredictionHeadTransform(nn.Module):
|
494 |
+
def __init__(self, config):
|
495 |
+
super().__init__()
|
496 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
497 |
+
if isinstance(config.hidden_act, str):
|
498 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
499 |
+
else:
|
500 |
+
self.transform_act_fn = config.hidden_act
|
501 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
502 |
+
|
503 |
+
def forward(self, hidden_states):
|
504 |
+
hidden_states = self.dense(hidden_states)
|
505 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
506 |
+
hidden_states = self.LayerNorm(hidden_states)
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class BertLMPredictionHead(nn.Module):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__()
|
513 |
+
self.transform = BertPredictionHeadTransform(config)
|
514 |
+
|
515 |
+
# The output weights are the same as the input embeddings, but there is
|
516 |
+
# an output-only bias for each token.
|
517 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
518 |
+
|
519 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
520 |
+
|
521 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
522 |
+
self.decoder.bias = self.bias
|
523 |
+
|
524 |
+
def forward(self, hidden_states):
|
525 |
+
hidden_states = self.transform(hidden_states)
|
526 |
+
hidden_states = self.decoder(hidden_states)
|
527 |
+
return hidden_states
|
528 |
+
|
529 |
+
|
530 |
+
class BertOnlyMLMHead(nn.Module):
|
531 |
+
def __init__(self, config):
|
532 |
+
super().__init__()
|
533 |
+
self.predictions = BertLMPredictionHead(config)
|
534 |
+
|
535 |
+
def forward(self, sequence_output):
|
536 |
+
prediction_scores = self.predictions(sequence_output)
|
537 |
+
return prediction_scores
|
538 |
+
|
539 |
+
|
540 |
+
class BertPreTrainedModel(PreTrainedModel):
|
541 |
+
"""
|
542 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
543 |
+
models.
|
544 |
+
"""
|
545 |
+
|
546 |
+
config_class = BertConfig
|
547 |
+
base_model_prefix = "bert"
|
548 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
549 |
+
|
550 |
+
def _init_weights(self, module):
|
551 |
+
""" Initialize the weights """
|
552 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
553 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
554 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
555 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
556 |
+
elif isinstance(module, nn.LayerNorm):
|
557 |
+
module.bias.data.zero_()
|
558 |
+
module.weight.data.fill_(1.0)
|
559 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
560 |
+
module.bias.data.zero_()
|
561 |
+
|
562 |
+
|
563 |
+
class BertModel(BertPreTrainedModel):
|
564 |
+
"""
|
565 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
566 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
567 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
568 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
569 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
570 |
+
input to the forward pass.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, config, add_pooling_layer=True):
|
574 |
+
super().__init__(config)
|
575 |
+
self.config = config
|
576 |
+
|
577 |
+
self.embeddings = BertEmbeddings(config)
|
578 |
+
|
579 |
+
self.encoder = BertEncoder(config)
|
580 |
+
|
581 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
582 |
+
|
583 |
+
self.init_weights()
|
584 |
+
|
585 |
+
|
586 |
+
def get_input_embeddings(self):
|
587 |
+
return self.embeddings.word_embeddings
|
588 |
+
|
589 |
+
def set_input_embeddings(self, value):
|
590 |
+
self.embeddings.word_embeddings = value
|
591 |
+
|
592 |
+
def _prune_heads(self, heads_to_prune):
|
593 |
+
"""
|
594 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
595 |
+
class PreTrainedModel
|
596 |
+
"""
|
597 |
+
for layer, heads in heads_to_prune.items():
|
598 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
599 |
+
|
600 |
+
|
601 |
+
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
|
602 |
+
"""
|
603 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
604 |
+
|
605 |
+
Arguments:
|
606 |
+
attention_mask (:obj:`torch.Tensor`):
|
607 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
608 |
+
input_shape (:obj:`Tuple[int]`):
|
609 |
+
The shape of the input to the model.
|
610 |
+
device: (:obj:`torch.device`):
|
611 |
+
The device of the input to the model.
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
615 |
+
"""
|
616 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
617 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
618 |
+
if attention_mask.dim() == 3:
|
619 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
620 |
+
elif attention_mask.dim() == 2:
|
621 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
622 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
623 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
624 |
+
if is_decoder:
|
625 |
+
batch_size, seq_length = input_shape
|
626 |
+
|
627 |
+
seq_ids = torch.arange(seq_length, device=device)
|
628 |
+
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
629 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
630 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
631 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
632 |
+
|
633 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
634 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
635 |
+
causal_mask = torch.cat(
|
636 |
+
[
|
637 |
+
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
638 |
+
causal_mask,
|
639 |
+
],
|
640 |
+
axis=-1,
|
641 |
+
)
|
642 |
+
|
643 |
+
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
644 |
+
else:
|
645 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
646 |
+
else:
|
647 |
+
raise ValueError(
|
648 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
649 |
+
input_shape, attention_mask.shape
|
650 |
+
)
|
651 |
+
)
|
652 |
+
|
653 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
654 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
655 |
+
# positions we want to attend and -10000.0 for masked positions.
|
656 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
657 |
+
# effectively the same as removing these entirely.
|
658 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
659 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
660 |
+
return extended_attention_mask
|
661 |
+
|
662 |
+
def forward(
|
663 |
+
self,
|
664 |
+
input_ids=None,
|
665 |
+
attention_mask=None,
|
666 |
+
position_ids=None,
|
667 |
+
head_mask=None,
|
668 |
+
inputs_embeds=None,
|
669 |
+
encoder_embeds=None,
|
670 |
+
encoder_hidden_states=None,
|
671 |
+
encoder_attention_mask=None,
|
672 |
+
past_key_values=None,
|
673 |
+
use_cache=None,
|
674 |
+
output_attentions=None,
|
675 |
+
output_hidden_states=None,
|
676 |
+
return_dict=None,
|
677 |
+
is_decoder=False,
|
678 |
+
mode='multimodal',
|
679 |
+
):
|
680 |
+
r"""
|
681 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
682 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
683 |
+
the model is configured as a decoder.
|
684 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
685 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
686 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
687 |
+
- 1 for tokens that are **not masked**,
|
688 |
+
- 0 for tokens that are **masked**.
|
689 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
690 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
691 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
692 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
693 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
694 |
+
use_cache (:obj:`bool`, `optional`):
|
695 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
696 |
+
decoding (see :obj:`past_key_values`).
|
697 |
+
"""
|
698 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
699 |
+
output_hidden_states = (
|
700 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
701 |
+
)
|
702 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
703 |
+
|
704 |
+
if is_decoder:
|
705 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
706 |
+
else:
|
707 |
+
use_cache = False
|
708 |
+
|
709 |
+
if input_ids is not None and inputs_embeds is not None:
|
710 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
711 |
+
elif input_ids is not None:
|
712 |
+
input_shape = input_ids.size()
|
713 |
+
batch_size, seq_length = input_shape
|
714 |
+
device = input_ids.device
|
715 |
+
elif inputs_embeds is not None:
|
716 |
+
input_shape = inputs_embeds.size()[:-1]
|
717 |
+
batch_size, seq_length = input_shape
|
718 |
+
device = inputs_embeds.device
|
719 |
+
elif encoder_embeds is not None:
|
720 |
+
input_shape = encoder_embeds.size()[:-1]
|
721 |
+
batch_size, seq_length = input_shape
|
722 |
+
device = encoder_embeds.device
|
723 |
+
else:
|
724 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
725 |
+
|
726 |
+
# past_key_values_length
|
727 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
728 |
+
|
729 |
+
if attention_mask is None:
|
730 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
731 |
+
|
732 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
733 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
734 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
|
735 |
+
device, is_decoder)
|
736 |
+
|
737 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
738 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
739 |
+
if encoder_hidden_states is not None:
|
740 |
+
if type(encoder_hidden_states) == list:
|
741 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
742 |
+
else:
|
743 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
744 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
745 |
+
|
746 |
+
if type(encoder_attention_mask) == list:
|
747 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
748 |
+
elif encoder_attention_mask is None:
|
749 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
750 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
751 |
+
else:
|
752 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
753 |
+
else:
|
754 |
+
encoder_extended_attention_mask = None
|
755 |
+
|
756 |
+
# Prepare head mask if needed
|
757 |
+
# 1.0 in head_mask indicate we keep the head
|
758 |
+
# attention_probs has shape bsz x n_heads x N x N
|
759 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
760 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
761 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
762 |
+
|
763 |
+
if encoder_embeds is None:
|
764 |
+
embedding_output = self.embeddings(
|
765 |
+
input_ids=input_ids,
|
766 |
+
position_ids=position_ids,
|
767 |
+
inputs_embeds=inputs_embeds,
|
768 |
+
past_key_values_length=past_key_values_length,
|
769 |
+
)
|
770 |
+
else:
|
771 |
+
embedding_output = encoder_embeds
|
772 |
+
|
773 |
+
encoder_outputs = self.encoder(
|
774 |
+
embedding_output,
|
775 |
+
attention_mask=extended_attention_mask,
|
776 |
+
head_mask=head_mask,
|
777 |
+
encoder_hidden_states=encoder_hidden_states,
|
778 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
779 |
+
past_key_values=past_key_values,
|
780 |
+
use_cache=use_cache,
|
781 |
+
output_attentions=output_attentions,
|
782 |
+
output_hidden_states=output_hidden_states,
|
783 |
+
return_dict=return_dict,
|
784 |
+
mode=mode,
|
785 |
+
)
|
786 |
+
sequence_output = encoder_outputs[0]
|
787 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
788 |
+
|
789 |
+
if not return_dict:
|
790 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
791 |
+
|
792 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
793 |
+
last_hidden_state=sequence_output,
|
794 |
+
pooler_output=pooled_output,
|
795 |
+
past_key_values=encoder_outputs.past_key_values,
|
796 |
+
hidden_states=encoder_outputs.hidden_states,
|
797 |
+
attentions=encoder_outputs.attentions,
|
798 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
799 |
+
)
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
804 |
+
|
805 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
806 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
807 |
+
|
808 |
+
def __init__(self, config):
|
809 |
+
super().__init__(config)
|
810 |
+
|
811 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
812 |
+
self.cls = BertOnlyMLMHead(config)
|
813 |
+
|
814 |
+
self.init_weights()
|
815 |
+
|
816 |
+
def get_output_embeddings(self):
|
817 |
+
return self.cls.predictions.decoder
|
818 |
+
|
819 |
+
def set_output_embeddings(self, new_embeddings):
|
820 |
+
self.cls.predictions.decoder = new_embeddings
|
821 |
+
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
input_ids=None,
|
825 |
+
attention_mask=None,
|
826 |
+
position_ids=None,
|
827 |
+
head_mask=None,
|
828 |
+
inputs_embeds=None,
|
829 |
+
encoder_hidden_states=None,
|
830 |
+
encoder_attention_mask=None,
|
831 |
+
labels=None,
|
832 |
+
past_key_values=None,
|
833 |
+
use_cache=None,
|
834 |
+
output_attentions=None,
|
835 |
+
output_hidden_states=None,
|
836 |
+
return_dict=None,
|
837 |
+
return_logits=False,
|
838 |
+
is_decoder=True,
|
839 |
+
reduction='mean',
|
840 |
+
mode='multimodal',
|
841 |
+
):
|
842 |
+
r"""
|
843 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
844 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
845 |
+
the model is configured as a decoder.
|
846 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
847 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
848 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
849 |
+
- 1 for tokens that are **not masked**,
|
850 |
+
- 0 for tokens that are **masked**.
|
851 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
852 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
853 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
854 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
855 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
856 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
857 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
858 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
859 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
860 |
+
use_cache (:obj:`bool`, `optional`):
|
861 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
862 |
+
decoding (see :obj:`past_key_values`).
|
863 |
+
Returns:
|
864 |
+
Example::
|
865 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
866 |
+
>>> import torch
|
867 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
868 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
869 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
870 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
871 |
+
>>> outputs = model(**inputs)
|
872 |
+
>>> prediction_logits = outputs.logits
|
873 |
+
"""
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
if labels is not None:
|
876 |
+
use_cache = False
|
877 |
+
|
878 |
+
outputs = self.bert(
|
879 |
+
input_ids,
|
880 |
+
attention_mask=attention_mask,
|
881 |
+
position_ids=position_ids,
|
882 |
+
head_mask=head_mask,
|
883 |
+
inputs_embeds=inputs_embeds,
|
884 |
+
encoder_hidden_states=encoder_hidden_states,
|
885 |
+
encoder_attention_mask=encoder_attention_mask,
|
886 |
+
past_key_values=past_key_values,
|
887 |
+
use_cache=use_cache,
|
888 |
+
output_attentions=output_attentions,
|
889 |
+
output_hidden_states=output_hidden_states,
|
890 |
+
return_dict=return_dict,
|
891 |
+
is_decoder=is_decoder,
|
892 |
+
mode=mode,
|
893 |
+
)
|
894 |
+
|
895 |
+
sequence_output = outputs[0]
|
896 |
+
prediction_scores = self.cls(sequence_output)
|
897 |
+
|
898 |
+
if return_logits:
|
899 |
+
return prediction_scores[:, :-1, :].contiguous()
|
900 |
+
|
901 |
+
lm_loss = None
|
902 |
+
if labels is not None:
|
903 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
904 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
905 |
+
labels = labels[:, 1:].contiguous()
|
906 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
907 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
908 |
+
if reduction=='none':
|
909 |
+
lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
|
910 |
+
|
911 |
+
if not return_dict:
|
912 |
+
output = (prediction_scores,) + outputs[2:]
|
913 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
914 |
+
|
915 |
+
return CausalLMOutputWithCrossAttentions(
|
916 |
+
loss=lm_loss,
|
917 |
+
logits=prediction_scores,
|
918 |
+
past_key_values=outputs.past_key_values,
|
919 |
+
hidden_states=outputs.hidden_states,
|
920 |
+
attentions=outputs.attentions,
|
921 |
+
cross_attentions=outputs.cross_attentions,
|
922 |
+
)
|
923 |
+
|
924 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
925 |
+
input_shape = input_ids.shape
|
926 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
927 |
+
if attention_mask is None:
|
928 |
+
attention_mask = input_ids.new_ones(input_shape)
|
929 |
+
|
930 |
+
# cut decoder_input_ids if past is used
|
931 |
+
if past is not None:
|
932 |
+
input_ids = input_ids[:, -1:]
|
933 |
+
|
934 |
+
return {
|
935 |
+
"input_ids": input_ids,
|
936 |
+
"attention_mask": attention_mask,
|
937 |
+
"past_key_values": past,
|
938 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
939 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
940 |
+
"is_decoder": True,
|
941 |
+
}
|
942 |
+
|
943 |
+
def _reorder_cache(self, past, beam_idx):
|
944 |
+
reordered_past = ()
|
945 |
+
for layer_past in past:
|
946 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
947 |
+
return reordered_past
|
diffsynth/extensions/ImageQualityMetric/BLIP/vit.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Adapted from BLIP (https://github.com/salesforce/BLIP)
|
3 |
+
* Based on timm code base
|
4 |
+
* https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
5 |
+
'''
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from functools import partial
|
11 |
+
|
12 |
+
from timm.models.vision_transformer import _cfg, PatchEmbed
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
from timm.models.layers import trunc_normal_, DropPath
|
15 |
+
from timm.models.helpers import named_apply, adapt_input_conv
|
16 |
+
|
17 |
+
# from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
|
18 |
+
|
19 |
+
class Mlp(nn.Module):
|
20 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
21 |
+
"""
|
22 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
23 |
+
super().__init__()
|
24 |
+
out_features = out_features or in_features
|
25 |
+
hidden_features = hidden_features or in_features
|
26 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
27 |
+
self.act = act_layer()
|
28 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
29 |
+
self.drop = nn.Dropout(drop)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.fc1(x)
|
33 |
+
x = self.act(x)
|
34 |
+
x = self.drop(x)
|
35 |
+
x = self.fc2(x)
|
36 |
+
x = self.drop(x)
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class Attention(nn.Module):
|
41 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
42 |
+
super().__init__()
|
43 |
+
self.num_heads = num_heads
|
44 |
+
head_dim = dim // num_heads
|
45 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
46 |
+
self.scale = qk_scale or head_dim ** -0.5
|
47 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
48 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
49 |
+
self.proj = nn.Linear(dim, dim)
|
50 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
51 |
+
self.attn_gradients = None
|
52 |
+
self.attention_map = None
|
53 |
+
|
54 |
+
def save_attn_gradients(self, attn_gradients):
|
55 |
+
self.attn_gradients = attn_gradients
|
56 |
+
|
57 |
+
def get_attn_gradients(self):
|
58 |
+
return self.attn_gradients
|
59 |
+
|
60 |
+
def save_attention_map(self, attention_map):
|
61 |
+
self.attention_map = attention_map
|
62 |
+
|
63 |
+
def get_attention_map(self):
|
64 |
+
return self.attention_map
|
65 |
+
|
66 |
+
def forward(self, x, register_hook=False):
|
67 |
+
B, N, C = x.shape
|
68 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
69 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
70 |
+
|
71 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
72 |
+
attn = attn.softmax(dim=-1)
|
73 |
+
attn = self.attn_drop(attn)
|
74 |
+
|
75 |
+
if register_hook:
|
76 |
+
self.save_attention_map(attn)
|
77 |
+
attn.register_hook(self.save_attn_gradients)
|
78 |
+
|
79 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
80 |
+
x = self.proj(x)
|
81 |
+
x = self.proj_drop(x)
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class Block(nn.Module):
|
86 |
+
|
87 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
88 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
|
89 |
+
super().__init__()
|
90 |
+
self.norm1 = norm_layer(dim)
|
91 |
+
self.attn = Attention(
|
92 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
93 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
94 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
95 |
+
self.norm2 = norm_layer(dim)
|
96 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
97 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
98 |
+
|
99 |
+
# if use_grad_checkpointing:
|
100 |
+
# self.attn = checkpoint_wrapper(self.attn)
|
101 |
+
# self.mlp = checkpoint_wrapper(self.mlp)
|
102 |
+
|
103 |
+
def forward(self, x, register_hook=False):
|
104 |
+
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
105 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class VisionTransformer(nn.Module):
|
110 |
+
""" Vision Transformer
|
111 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
112 |
+
https://arxiv.org/abs/2010.11929
|
113 |
+
"""
|
114 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
115 |
+
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
|
116 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
117 |
+
use_grad_checkpointing=False, ckpt_layer=0):
|
118 |
+
"""
|
119 |
+
Args:
|
120 |
+
img_size (int, tuple): input image size
|
121 |
+
patch_size (int, tuple): patch size
|
122 |
+
in_chans (int): number of input channels
|
123 |
+
num_classes (int): number of classes for classification head
|
124 |
+
embed_dim (int): embedding dimension
|
125 |
+
depth (int): depth of transformer
|
126 |
+
num_heads (int): number of attention heads
|
127 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
128 |
+
qkv_bias (bool): enable bias for qkv if True
|
129 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
130 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
131 |
+
drop_rate (float): dropout rate
|
132 |
+
attn_drop_rate (float): attention dropout rate
|
133 |
+
drop_path_rate (float): stochastic depth rate
|
134 |
+
norm_layer: (nn.Module): normalization layer
|
135 |
+
"""
|
136 |
+
super().__init__()
|
137 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
138 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
139 |
+
|
140 |
+
self.patch_embed = PatchEmbed(
|
141 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
142 |
+
|
143 |
+
num_patches = self.patch_embed.num_patches
|
144 |
+
|
145 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
146 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
147 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
148 |
+
|
149 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
150 |
+
self.blocks = nn.ModuleList([
|
151 |
+
Block(
|
152 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
153 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
154 |
+
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
|
155 |
+
)
|
156 |
+
for i in range(depth)])
|
157 |
+
self.norm = norm_layer(embed_dim)
|
158 |
+
|
159 |
+
trunc_normal_(self.pos_embed, std=.02)
|
160 |
+
trunc_normal_(self.cls_token, std=.02)
|
161 |
+
self.apply(self._init_weights)
|
162 |
+
|
163 |
+
def _init_weights(self, m):
|
164 |
+
if isinstance(m, nn.Linear):
|
165 |
+
trunc_normal_(m.weight, std=.02)
|
166 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
167 |
+
nn.init.constant_(m.bias, 0)
|
168 |
+
elif isinstance(m, nn.LayerNorm):
|
169 |
+
nn.init.constant_(m.bias, 0)
|
170 |
+
nn.init.constant_(m.weight, 1.0)
|
171 |
+
|
172 |
+
@torch.jit.ignore
|
173 |
+
def no_weight_decay(self):
|
174 |
+
return {'pos_embed', 'cls_token'}
|
175 |
+
|
176 |
+
def forward(self, x, register_blk=-1):
|
177 |
+
B = x.shape[0]
|
178 |
+
x = self.patch_embed(x)
|
179 |
+
|
180 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
181 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
182 |
+
|
183 |
+
x = x + self.pos_embed[:,:x.size(1),:]
|
184 |
+
x = self.pos_drop(x)
|
185 |
+
|
186 |
+
for i,blk in enumerate(self.blocks):
|
187 |
+
x = blk(x, register_blk==i)
|
188 |
+
x = self.norm(x)
|
189 |
+
|
190 |
+
return x
|
191 |
+
|
192 |
+
@torch.jit.ignore()
|
193 |
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
194 |
+
_load_weights(self, checkpoint_path, prefix)
|
195 |
+
|
196 |
+
|
197 |
+
@torch.no_grad()
|
198 |
+
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
199 |
+
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
200 |
+
"""
|
201 |
+
import numpy as np
|
202 |
+
|
203 |
+
def _n2p(w, t=True):
|
204 |
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
205 |
+
w = w.flatten()
|
206 |
+
if t:
|
207 |
+
if w.ndim == 4:
|
208 |
+
w = w.transpose([3, 2, 0, 1])
|
209 |
+
elif w.ndim == 3:
|
210 |
+
w = w.transpose([2, 0, 1])
|
211 |
+
elif w.ndim == 2:
|
212 |
+
w = w.transpose([1, 0])
|
213 |
+
return torch.from_numpy(w)
|
214 |
+
|
215 |
+
w = np.load(checkpoint_path)
|
216 |
+
if not prefix and 'opt/target/embedding/kernel' in w:
|
217 |
+
prefix = 'opt/target/'
|
218 |
+
|
219 |
+
if hasattr(model.patch_embed, 'backbone'):
|
220 |
+
# hybrid
|
221 |
+
backbone = model.patch_embed.backbone
|
222 |
+
stem_only = not hasattr(backbone, 'stem')
|
223 |
+
stem = backbone if stem_only else backbone.stem
|
224 |
+
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
225 |
+
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
226 |
+
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
227 |
+
if not stem_only:
|
228 |
+
for i, stage in enumerate(backbone.stages):
|
229 |
+
for j, block in enumerate(stage.blocks):
|
230 |
+
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
231 |
+
for r in range(3):
|
232 |
+
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
233 |
+
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
234 |
+
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
235 |
+
if block.downsample is not None:
|
236 |
+
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
237 |
+
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
238 |
+
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
239 |
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
240 |
+
else:
|
241 |
+
embed_conv_w = adapt_input_conv(
|
242 |
+
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
243 |
+
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
244 |
+
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
245 |
+
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
246 |
+
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
247 |
+
if pos_embed_w.shape != model.pos_embed.shape:
|
248 |
+
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
249 |
+
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
|
250 |
+
model.pos_embed.copy_(pos_embed_w)
|
251 |
+
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
252 |
+
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
253 |
+
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
254 |
+
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
255 |
+
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
256 |
+
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
257 |
+
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
258 |
+
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
259 |
+
for i, block in enumerate(model.blocks.children()):
|
260 |
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
261 |
+
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
262 |
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
263 |
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
264 |
+
block.attn.qkv.weight.copy_(torch.cat([
|
265 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
266 |
+
block.attn.qkv.bias.copy_(torch.cat([
|
267 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
268 |
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
269 |
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
270 |
+
for r in range(2):
|
271 |
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
272 |
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
273 |
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
274 |
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
275 |
+
|
276 |
+
|
277 |
+
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
278 |
+
# interpolate position embedding
|
279 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
280 |
+
num_patches = visual_encoder.patch_embed.num_patches
|
281 |
+
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
282 |
+
# height (== width) for the checkpoint position embedding
|
283 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
284 |
+
# height (== width) for the new position embedding
|
285 |
+
new_size = int(num_patches ** 0.5)
|
286 |
+
|
287 |
+
if orig_size!=new_size:
|
288 |
+
# class_token and dist_token are kept unchanged
|
289 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
290 |
+
# only the position tokens are interpolated
|
291 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
292 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
293 |
+
pos_tokens = torch.nn.functional.interpolate(
|
294 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
295 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
296 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
297 |
+
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
|
298 |
+
|
299 |
+
return new_pos_embed
|
300 |
+
else:
|
301 |
+
return pos_embed_checkpoint
|
diffsynth/extensions/ImageQualityMetric/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modelscope import snapshot_download
|
2 |
+
from typing_extensions import Literal, TypeAlias
|
3 |
+
import os
|
4 |
+
from diffsynth.extensions.ImageQualityMetric.aesthetic import AestheticScore
|
5 |
+
from diffsynth.extensions.ImageQualityMetric.imagereward import ImageRewardScore
|
6 |
+
from diffsynth.extensions.ImageQualityMetric.pickscore import PickScore
|
7 |
+
from diffsynth.extensions.ImageQualityMetric.clip import CLIPScore
|
8 |
+
from diffsynth.extensions.ImageQualityMetric.hps import HPScore_v2
|
9 |
+
from diffsynth.extensions.ImageQualityMetric.mps import MPScore
|
10 |
+
|
11 |
+
|
12 |
+
preference_model_id: TypeAlias = Literal[
|
13 |
+
"ImageReward",
|
14 |
+
"Aesthetic",
|
15 |
+
"PickScore",
|
16 |
+
"CLIP",
|
17 |
+
"HPSv2",
|
18 |
+
"HPSv2.1",
|
19 |
+
"MPS",
|
20 |
+
]
|
21 |
+
model_dict = {
|
22 |
+
"ImageReward": {
|
23 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
24 |
+
"allow_file_pattern": [
|
25 |
+
"ImageReward/ImageReward.safetensors",
|
26 |
+
"ImageReward/med_config.json",
|
27 |
+
"bert-base-uncased/config.json",
|
28 |
+
"bert-base-uncased/model.safetensors",
|
29 |
+
"bert-base-uncased/tokenizer.json",
|
30 |
+
"bert-base-uncased/tokenizer_config.json",
|
31 |
+
"bert-base-uncased/vocab.txt",
|
32 |
+
],
|
33 |
+
"load_path": {
|
34 |
+
"imagereward": "ImageReward/ImageReward.safetensors",
|
35 |
+
"med_config": "ImageReward/med_config.json",
|
36 |
+
"bert_model_path": "bert-base-uncased",
|
37 |
+
},
|
38 |
+
"model_class": ImageRewardScore
|
39 |
+
},
|
40 |
+
"Aesthetic": {
|
41 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
42 |
+
"allow_file_pattern": [
|
43 |
+
"aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
|
44 |
+
"clip-vit-large-patch14/config.json",
|
45 |
+
"clip-vit-large-patch14/merges.txt",
|
46 |
+
"clip-vit-large-patch14/model.safetensors",
|
47 |
+
"clip-vit-large-patch14/preprocessor_config.json",
|
48 |
+
"clip-vit-large-patch14/special_tokens_map.json",
|
49 |
+
"clip-vit-large-patch14/tokenizer.json",
|
50 |
+
"clip-vit-large-patch14/tokenizer_config.json",
|
51 |
+
"clip-vit-large-patch14/vocab.json",
|
52 |
+
],
|
53 |
+
"load_path": {
|
54 |
+
"aesthetic_predictor": "aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors",
|
55 |
+
"clip-large": "clip-vit-large-patch14",
|
56 |
+
},
|
57 |
+
"model_class": AestheticScore
|
58 |
+
},
|
59 |
+
"PickScore": {
|
60 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
61 |
+
"allow_file_pattern": [
|
62 |
+
"PickScore_v1/*",
|
63 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
|
64 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
|
65 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
|
66 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
|
67 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
|
68 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
|
69 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
|
70 |
+
],
|
71 |
+
"load_path": {
|
72 |
+
"pickscore": "PickScore_v1",
|
73 |
+
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
|
74 |
+
},
|
75 |
+
"model_class": PickScore
|
76 |
+
},
|
77 |
+
"CLIP": {
|
78 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
79 |
+
"allow_file_pattern": [
|
80 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
|
81 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
82 |
+
],
|
83 |
+
"load_path": {
|
84 |
+
"open_clip": "CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin",
|
85 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
86 |
+
},
|
87 |
+
"model_class": CLIPScore
|
88 |
+
},
|
89 |
+
"HPSv2": {
|
90 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
91 |
+
"allow_file_pattern": [
|
92 |
+
"HPS_v2/HPS_v2_compressed.safetensors",
|
93 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
94 |
+
],
|
95 |
+
"load_path": {
|
96 |
+
"hpsv2": "HPS_v2/HPS_v2_compressed.safetensors",
|
97 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
98 |
+
},
|
99 |
+
"model_class": HPScore_v2,
|
100 |
+
"extra_kwargs": {"model_version": "v2"}
|
101 |
+
},
|
102 |
+
"HPSv2.1": {
|
103 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
104 |
+
"allow_file_pattern": [
|
105 |
+
"HPS_v2/HPS_v2.1_compressed.safetensors",
|
106 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
107 |
+
],
|
108 |
+
"load_path": {
|
109 |
+
"hpsv2.1": "HPS_v2/HPS_v2.1_compressed.safetensors",
|
110 |
+
"open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz",
|
111 |
+
},
|
112 |
+
"model_class": HPScore_v2,
|
113 |
+
"extra_kwargs": {"model_version": "v21"}
|
114 |
+
},
|
115 |
+
"MPS": {
|
116 |
+
"model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained",
|
117 |
+
"allow_file_pattern": [
|
118 |
+
"MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
|
119 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/config.json",
|
120 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt",
|
121 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json",
|
122 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json",
|
123 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json",
|
124 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json",
|
125 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json",
|
126 |
+
],
|
127 |
+
"load_path": {
|
128 |
+
"mps": "MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors",
|
129 |
+
"clip": "CLIP-ViT-H-14-laion2B-s32B-b79K",
|
130 |
+
},
|
131 |
+
"model_class": MPScore
|
132 |
+
},
|
133 |
+
}
|
134 |
+
|
135 |
+
|
136 |
+
def download_preference_model(model_name: preference_model_id, cache_dir="models"):
|
137 |
+
metadata = model_dict[model_name]
|
138 |
+
snapshot_download(model_id=metadata["model_id"], allow_file_pattern=metadata["allow_file_pattern"], cache_dir=cache_dir)
|
139 |
+
load_path = metadata["load_path"]
|
140 |
+
load_path = {key: os.path.join(cache_dir, metadata["model_id"], path) for key, path in load_path.items()}
|
141 |
+
return load_path
|
142 |
+
|
143 |
+
|
144 |
+
def load_preference_model(model_name: preference_model_id, device = "cuda", path = None):
|
145 |
+
model_class = model_dict[model_name]["model_class"]
|
146 |
+
extra_kwargs = model_dict[model_name].get("extra_kwargs", {})
|
147 |
+
preference_model = model_class(device=device, path=path, **extra_kwargs)
|
148 |
+
return preference_model
|
diffsynth/extensions/ImageQualityMetric/aesthetic.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import os
|
7 |
+
from typing import Union, List
|
8 |
+
from .config import MODEL_PATHS
|
9 |
+
|
10 |
+
class MLP(torch.nn.Module):
|
11 |
+
def __init__(self, input_size: int, xcol: str = "emb", ycol: str = "avg_rating"):
|
12 |
+
super().__init__()
|
13 |
+
self.input_size = input_size
|
14 |
+
self.xcol = xcol
|
15 |
+
self.ycol = ycol
|
16 |
+
self.layers = torch.nn.Sequential(
|
17 |
+
torch.nn.Linear(self.input_size, 1024),
|
18 |
+
#torch.nn.ReLU(),
|
19 |
+
torch.nn.Dropout(0.2),
|
20 |
+
torch.nn.Linear(1024, 128),
|
21 |
+
#torch.nn.ReLU(),
|
22 |
+
torch.nn.Dropout(0.2),
|
23 |
+
torch.nn.Linear(128, 64),
|
24 |
+
#torch.nn.ReLU(),
|
25 |
+
torch.nn.Dropout(0.1),
|
26 |
+
torch.nn.Linear(64, 16),
|
27 |
+
#torch.nn.ReLU(),
|
28 |
+
torch.nn.Linear(16, 1),
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
32 |
+
return self.layers(x)
|
33 |
+
|
34 |
+
def training_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
|
35 |
+
x = batch[self.xcol]
|
36 |
+
y = batch[self.ycol].reshape(-1, 1)
|
37 |
+
x_hat = self.layers(x)
|
38 |
+
loss = torch.nn.functional.mse_loss(x_hat, y)
|
39 |
+
return loss
|
40 |
+
|
41 |
+
def validation_step(self, batch: dict, batch_idx: int) -> torch.Tensor:
|
42 |
+
x = batch[self.xcol]
|
43 |
+
y = batch[self.ycol].reshape(-1, 1)
|
44 |
+
x_hat = self.layers(x)
|
45 |
+
loss = torch.nn.functional.mse_loss(x_hat, y)
|
46 |
+
return loss
|
47 |
+
|
48 |
+
def configure_optimizers(self) -> torch.optim.Optimizer:
|
49 |
+
return torch.optim.Adam(self.parameters(), lr=1e-3)
|
50 |
+
|
51 |
+
|
52 |
+
class AestheticScore(torch.nn.Module):
|
53 |
+
def __init__(self, device: torch.device, path: str = MODEL_PATHS):
|
54 |
+
super().__init__()
|
55 |
+
self.device = device
|
56 |
+
self.aes_model_path = path.get("aesthetic_predictor")
|
57 |
+
# Load the MLP model
|
58 |
+
self.model = MLP(768)
|
59 |
+
try:
|
60 |
+
if self.aes_model_path.endswith(".safetensors"):
|
61 |
+
state_dict = load_file(self.aes_model_path)
|
62 |
+
else:
|
63 |
+
state_dict = torch.load(self.aes_model_path)
|
64 |
+
self.model.load_state_dict(state_dict)
|
65 |
+
except Exception as e:
|
66 |
+
raise ValueError(f"Error loading model weights from {self.aes_model_path}: {e}")
|
67 |
+
|
68 |
+
self.model.to(device)
|
69 |
+
self.model.eval()
|
70 |
+
|
71 |
+
# Load the CLIP model and processor
|
72 |
+
clip_model_name = path.get('clip-large')
|
73 |
+
self.model2 = AutoModel.from_pretrained(clip_model_name).eval().to(device)
|
74 |
+
self.processor = AutoProcessor.from_pretrained(clip_model_name)
|
75 |
+
|
76 |
+
def _calculate_score(self, image: torch.Tensor) -> float:
|
77 |
+
"""Calculate the aesthetic score for a single image.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
image (torch.Tensor): The processed image tensor.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
float: The aesthetic score.
|
84 |
+
"""
|
85 |
+
with torch.no_grad():
|
86 |
+
# Get image embeddings
|
87 |
+
image_embs = self.model2.get_image_features(image)
|
88 |
+
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
|
89 |
+
|
90 |
+
# Compute score
|
91 |
+
score = self.model(image_embs).cpu().flatten().item()
|
92 |
+
|
93 |
+
return score
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]:
|
97 |
+
"""Score the images based on their aesthetic quality.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s).
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
List[float]: List of scores for the images.
|
104 |
+
"""
|
105 |
+
try:
|
106 |
+
if isinstance(images, (str, Image.Image)):
|
107 |
+
# Single image
|
108 |
+
if isinstance(images, str):
|
109 |
+
pil_image = Image.open(images)
|
110 |
+
else:
|
111 |
+
pil_image = images
|
112 |
+
|
113 |
+
# Prepare image inputs
|
114 |
+
image_inputs = self.processor(
|
115 |
+
images=pil_image,
|
116 |
+
padding=True,
|
117 |
+
truncation=True,
|
118 |
+
max_length=77,
|
119 |
+
return_tensors="pt",
|
120 |
+
).to(self.device)
|
121 |
+
|
122 |
+
return [self._calculate_score(image_inputs["pixel_values"])]
|
123 |
+
elif isinstance(images, list):
|
124 |
+
# Multiple images
|
125 |
+
scores = []
|
126 |
+
for one_image in images:
|
127 |
+
if isinstance(one_image, str):
|
128 |
+
pil_image = Image.open(one_image)
|
129 |
+
elif isinstance(one_image, Image.Image):
|
130 |
+
pil_image = one_image
|
131 |
+
else:
|
132 |
+
raise TypeError("The type of parameter images is illegal.")
|
133 |
+
|
134 |
+
# Prepare image inputs
|
135 |
+
image_inputs = self.processor(
|
136 |
+
images=pil_image,
|
137 |
+
padding=True,
|
138 |
+
truncation=True,
|
139 |
+
max_length=77,
|
140 |
+
return_tensors="pt",
|
141 |
+
).to(self.device)
|
142 |
+
|
143 |
+
scores.append(self._calculate_score(image_inputs["pixel_values"]))
|
144 |
+
return scores
|
145 |
+
else:
|
146 |
+
raise TypeError("The type of parameter images is illegal.")
|
147 |
+
except Exception as e:
|
148 |
+
raise RuntimeError(f"Error in scoring images: {e}")
|