from diffsynth import ModelManager, SD3ImagePipeline from diffsynth.trainers.text_to_image import LightningModelForT2ILoRA, add_general_parsers, launch_training_task import torch, os, argparse os.environ["TOKENIZERS_PARALLELISM"] = "True" class LightningModel(LightningModelForT2ILoRA): def __init__( self, torch_dtype=torch.float16, pretrained_weights=[], preset_lora_path=None, learning_rate=1e-4, use_gradient_checkpointing=True, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="gaussian", pretrained_lora_path=None, ): super().__init__(learning_rate=learning_rate, use_gradient_checkpointing=use_gradient_checkpointing) # Load models model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device) model_manager.load_models(pretrained_weights) self.pipe = SD3ImagePipeline.from_model_manager(model_manager) self.pipe.scheduler.set_timesteps(1000, training=True) if preset_lora_path is not None: preset_lora_path = preset_lora_path.split(",") for path in preset_lora_path: model_manager.load_lora(path) self.freeze_parameters() self.add_lora_to_model( self.pipe.denoising_model(), lora_rank=lora_rank, lora_alpha=lora_alpha, lora_target_modules=lora_target_modules, init_lora_weights=init_lora_weights, pretrained_lora_path=pretrained_lora_path, ) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_path", type=str, default=None, required=True, help="Path to pretrained models, separated by comma. For example, SD3: `models/stable_diffusion_3/sd3_medium_incl_clips_t5xxlfp16.safetensors`, SD3.5-large: `models/stable_diffusion_3/text_encoders/clip_g.safetensors,models/stable_diffusion_3/text_encoders/clip_l.safetensors,models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors,models/stable_diffusion_3/sd3.5_large.safetensors`", ) parser.add_argument( "--lora_target_modules", type=str, default="a_to_qkv,b_to_qkv,norm_1_a.linear,norm_1_b.linear,a_to_out,b_to_out,ff_a.0,ff_a.2,ff_b.0,ff_b.2", help="Layers with LoRA modules.", ) parser.add_argument( "--preset_lora_path", type=str, default=None, help="Preset LoRA path.", ) parser.add_argument( "--num_timesteps", type=int, default=1000, help="Number of total timesteps. For turbo models, please set this parameter to the number of expected number of inference steps.", ) parser = add_general_parsers(parser) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() model = LightningModel( torch_dtype=torch.float32 if args.precision == "32" else torch.float16, pretrained_weights=args.pretrained_path.split(","), preset_lora_path=args.preset_lora_path, learning_rate=args.learning_rate, use_gradient_checkpointing=args.use_gradient_checkpointing, lora_rank=args.lora_rank, lora_alpha=args.lora_alpha, init_lora_weights=args.init_lora_weights, pretrained_lora_path=args.pretrained_lora_path, lora_target_modules=args.lora_target_modules ) launch_training_task(model, args)