from diffsynth import ModelManager, FluxImagePipeline, download_customized_models from modelscope import dataset_snapshot_download from examples.EntityControl.utils import visualize_masks from PIL import Image import torch # download and load model model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda", model_id_list=["FLUX.1-dev", "InstantX/FLUX.1-dev-IP-Adapter"]) model_manager.load_lora( download_customized_models( model_id="DiffSynth-Studio/Eligen", origin_file_path="model_bf16.safetensors", local_dir="models/lora/entity_control" ), lora_alpha=1 ) pipe = FluxImagePipeline.from_model_manager(model_manager) # download and load mask images dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern="data/examples/eligen/ipadapter/*") masks = [Image.open(f"./data/examples/eligen/ipadapter/ipadapter_mask_{i}.png") for i in range(1, 4)] entity_prompts = ['A girl', 'hat', 'sunset'] global_prompt = "A girl wearing a hat, looking at the sunset" negative_prompt = "worst quality, low quality, monochrome, zombie, interlocked fingers, Aissist, cleavage, nsfw" reference_img = Image.open("./data/examples/eligen/ipadapter/ipadapter_image.png") # generate image image = pipe( prompt=global_prompt, cfg_scale=3.0, negative_prompt=negative_prompt, num_inference_steps=50, embedded_guidance=3.5, seed=4, height=1024, width=1024, eligen_entity_prompts=entity_prompts, eligen_entity_masks=masks, enable_eligen_on_negative=False, ipadapter_images=[reference_img], ipadapter_scale=0.7 ) image.save(f"styled_entity_control.png") visualize_masks(image, masks, entity_prompts, f"styled_entity_control_with_mask.png")