from diffsynth import ModelManager, download_models, FluxImagePipeline import torch # Download models (automatically) # `models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin`: [link](https://huggingface.co/InstantX/FLUX.1-dev-IP-Adapter/blob/main/ip-adapter.bin) # `models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder`: [link](https://huggingface.co/google/siglip-so400m-patch14-384) download_models(["InstantX/FLUX.1-dev-IP-Adapter", "FLUX.1-dev"]) # Load models model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda") model_manager.load_models([ "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder", "models/FLUX/FLUX.1-dev/text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2", "models/FLUX/FLUX.1-dev/ae.safetensors", "models/FLUX/FLUX.1-dev/flux1-dev.safetensors", ]) seed = 42 pipe = FluxImagePipeline.from_model_manager(model_manager) torch.manual_seed(seed) origin_prompt = "a rabbit in a garden, colorful flowers" image = pipe( prompt=origin_prompt, cfg_scale=1.0, embedded_guidance=3.5, height=1280, width=960, num_inference_steps=30 ) image.save("style image.jpg") torch.manual_seed(seed) image = pipe( prompt="A piggy", cfg_scale=1.0, embedded_guidance=3.5, height=1280, width=960, num_inference_steps=30, ipadapter_images=[image], ipadapter_scale=0.7 ) image.save("A piggy.jpg")