from diffsynth import ModelManager, FluxImagePipeline, download_models, QwenPrompt import torch download_models(["FLUX.1-dev", "QwenPrompt"]) model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda") model_manager.load_models([ "models/FLUX/FLUX.1-dev/text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2", "models/FLUX/FLUX.1-dev/ae.safetensors", "models/FLUX/FLUX.1-dev/flux1-dev.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct", ]) pipe = FluxImagePipeline.from_model_manager(model_manager, prompt_refiner_classes=[QwenPrompt]) prompt = "鹰" negative_prompt = "" for seed in range(4): torch.manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, height=1024, width=1024, num_inference_steps=30 ) image.save(f"{seed}.jpg")