from diffsynth import ModelManager, FluxImagePipeline from diffsynth.trainers.text_to_image import LightningModelForT2ILoRA, add_general_parsers, launch_training_task from diffsynth.models.lora import FluxLoRAConverter import torch, os, argparse os.environ["TOKENIZERS_PARALLELISM"] = "True" class LightningModel(LightningModelForT2ILoRA): def __init__( self, torch_dtype=torch.float16, pretrained_weights=[], preset_lora_path=None, learning_rate=1e-4, use_gradient_checkpointing=True, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None, quantize = None ): super().__init__(learning_rate=learning_rate, use_gradient_checkpointing=use_gradient_checkpointing, state_dict_converter=state_dict_converter) # Load models model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device) if quantize is None: model_manager.load_models(pretrained_weights) else: model_manager.load_models(pretrained_weights[1:]) model_manager.load_model(pretrained_weights[0], torch_dtype=quantize) if preset_lora_path is not None: preset_lora_path = preset_lora_path.split(",") for path in preset_lora_path: model_manager.load_lora(path) self.pipe = FluxImagePipeline.from_model_manager(model_manager) if quantize is not None: self.pipe.dit.quantize() self.pipe.scheduler.set_timesteps(1000, training=True) self.freeze_parameters() self.add_lora_to_model( self.pipe.denoising_model(), lora_rank=lora_rank, lora_alpha=lora_alpha, lora_target_modules=lora_target_modules, init_lora_weights=init_lora_weights, pretrained_lora_path=pretrained_lora_path, state_dict_converter=FluxLoRAConverter.align_to_diffsynth_format ) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_text_encoder_path", type=str, default=None, required=True, help="Path to pretrained text encoder model. For example, `models/FLUX/FLUX.1-dev/text_encoder/model.safetensors`.", ) parser.add_argument( "--pretrained_text_encoder_2_path", type=str, default=None, required=True, help="Path to pretrained t5 text encoder model. For example, `models/FLUX/FLUX.1-dev/text_encoder_2`.", ) parser.add_argument( "--pretrained_dit_path", type=str, default=None, required=True, help="Path to pretrained dit model. For example, `models/FLUX/FLUX.1-dev/flux1-dev.safetensors`.", ) parser.add_argument( "--pretrained_vae_path", type=str, default=None, required=True, help="Path to pretrained vae model. For example, `models/FLUX/FLUX.1-dev/ae.safetensors`.", ) parser.add_argument( "--lora_target_modules", type=str, default="a_to_qkv,b_to_qkv,ff_a.0,ff_a.2,ff_b.0,ff_b.2,a_to_out,b_to_out,proj_out,norm.linear,norm1_a.linear,norm1_b.linear,to_qkv_mlp", help="Layers with LoRA modules.", ) parser.add_argument( "--align_to_opensource_format", default=False, action="store_true", help="Whether to export lora files aligned with other opensource format.", ) parser.add_argument( "--quantize", type=str, default=None, choices=["float8_e4m3fn"], help="Whether to use quantization when training the model, and in which format.", ) parser.add_argument( "--preset_lora_path", type=str, default=None, help="Preset LoRA path.", ) parser = add_general_parsers(parser) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() model = LightningModel( torch_dtype={"32": torch.float32, "bf16": torch.bfloat16}.get(args.precision, torch.float16), pretrained_weights=[args.pretrained_dit_path, args.pretrained_text_encoder_path, args.pretrained_text_encoder_2_path, args.pretrained_vae_path], preset_lora_path=args.preset_lora_path, learning_rate=args.learning_rate, use_gradient_checkpointing=args.use_gradient_checkpointing, lora_rank=args.lora_rank, lora_alpha=args.lora_alpha, lora_target_modules=args.lora_target_modules, init_lora_weights=args.init_lora_weights, pretrained_lora_path=args.pretrained_lora_path, state_dict_converter=FluxLoRAConverter.align_to_opensource_format if args.align_to_opensource_format else None, quantize={"float8_e4m3fn": torch.float8_e4m3fn}.get(args.quantize, None), ) launch_training_task(model, args)