File size: 2,219 Bytes
a5daac9 e467ce1 a5daac9 baec66f a5daac9 e80edba a5daac9 baec66f a5daac9 e80edba baec66f e80edba a5daac9 baec66f a5daac9 baec66f a5daac9 baec66f a5daac9 baec66f a5daac9 baec66f a5daac9 baec66f a5daac9 e467ce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
language:
- ta
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small En - Vishal Sankar Ram
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_11_0
config: ta
split: test
args: 'config: en, split: test'
metrics:
- type: wer
value: 67.42770167427702
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small En - Vishal Sankar Ram
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Wer: 67.4277
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0.08 | 10 | 0.5279 | 73.3638 |
| No log | 0.16 | 20 | 0.4622 | 70.7763 |
| 0.45 | 0.24 | 30 | 0.4298 | 69.2542 |
| 0.45 | 0.32 | 40 | 0.4193 | 67.1233 |
| 0.334 | 0.4 | 50 | 0.4155 | 67.4277 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0 |