File size: 2,219 Bytes
a5daac9
 
 
e467ce1
a5daac9
 
 
 
 
 
 
 
 
baec66f
a5daac9
 
 
e80edba
a5daac9
 
 
 
baec66f
a5daac9
 
e80edba
baec66f
e80edba
a5daac9
 
 
 
 
baec66f
a5daac9
 
 
baec66f
 
a5daac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baec66f
 
a5daac9
 
 
 
baec66f
 
a5daac9
 
 
 
 
baec66f
 
 
 
 
a5daac9
 
 
 
 
baec66f
a5daac9
e467ce1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
language:
- ta
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small En - Vishal Sankar Ram
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_11_0
      config: ta
      split: test
      args: 'config: en, split: test'
    metrics:
    - type: wer
      value: 67.42770167427702
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small En - Vishal Sankar Ram

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Wer: 67.4277

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log        | 0.08  | 10   | 0.5279          | 73.3638 |
| No log        | 0.16  | 20   | 0.4622          | 70.7763 |
| 0.45          | 0.24  | 30   | 0.4298          | 69.2542 |
| 0.45          | 0.32  | 40   | 0.4193          | 67.1233 |
| 0.334         | 0.4   | 50   | 0.4155          | 67.4277 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0