--- library_name: transformers language: - ta license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small En - Vishal Sankar Ram results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_11_0 config: ta split: test args: 'config: en, split: test' metrics: - type: wer value: 67.42770167427702 name: Wer --- # Whisper Small En - Vishal Sankar Ram This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 - Wer: 67.4277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.08 | 10 | 0.5279 | 73.3638 | | No log | 0.16 | 20 | 0.4622 | 70.7763 | | 0.45 | 0.24 | 30 | 0.4298 | 69.2542 | | 0.45 | 0.32 | 40 | 0.4193 | 67.1233 | | 0.334 | 0.4 | 50 | 0.4155 | 67.4277 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0