File size: 5,443 Bytes
b267db1 ab3a869 b267db1 ab3a869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: mit
datasets:
- nyu-mll/glue
- google-research-datasets/paws-x
- tasksource/pit
- AlekseyKorshuk/quora-question-pairs
language:
- en
metrics:
- accuracy
- f1
base_model:
- microsoft/mpnet-base
library_name: transformers
---
# Model Card for Fine-Tuned MPNet for Paraphrase Detection
### Model Description
This is a fine-tuned version of **MPNet-base** for **paraphrase detection**, trained on four benchmark datasets: **MRPC, QQP, PAWS-X, and PIT**. The model is optimized for **fast inference speed** while maintaining high accuracy, making it suitable for applications like **duplicate content detection, question answering, and semantic similarity analysis**.
- **Developed by:** Viswadarshan R R
- **Model Type:** Transformer-based Sentence Pair Classifier
- **Language:** English
- **Finetuned from:** `microsoft/mpnet-base`
### Model Sources
- **Repository:** [Hugging Face Model Hub](https://huggingface.co/viswadarshan06/pd-mpnet/)
- **Research Paper:** _Comparative Insights into Modern Architectures for Paraphrase Detection_ (Accepted at ICCIDS 2025)
- **Demo:** (To be added upon deployment)
## Uses
### Direct Use
- Identifying **duplicate questions** in FAQs and customer support.
- Enhancing **semantic search** in information retrieval systems.
- Improving **document deduplication** and content moderation.
### Downstream Use
The model can be further fine-tuned on domain-specific paraphrase datasets (e.g., medical, legal, or finance).
### Out-of-Scope Use
- The model is not designed for multilingual paraphrase detection since it is trained only on English datasets.
- May not perform well on low-resource languages without additional fine-tuning.
## Bias, Risks, and Limitations
### Known Limitations
- Struggles with idiomatic expressions: The model finds it difficult to detect paraphrases in figurative language.
- Contextual ambiguity: May fail when sentences require deep contextual reasoning.
### Recommendations
Users should fine-tune the model with additional cultural and idiomatic datasets for improved generalization in real-world applications.
## How to Get Started with the Model
To use the model, install **transformers** and load the fine-tuned model as follows:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the tokenizer and model
model_path = "viswadarshan06/pd-mpnet"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Encode sentence pairs
inputs = tokenizer("The car is fast.", "The vehicle moves quickly.", return_tensors="pt", padding=True, truncation=True)
# Get predictions
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax().item()
print("Paraphrase" if predicted_class == 1 else "Not a Paraphrase")
```
## Training Details
This model was trained using a combination of four datasets:
- **MRPC**: News-based paraphrases.
- **QQP**: Duplicate question detection.
- **PAWS-X**: Adversarial paraphrases for robustness testing.
- **PIT**: Short-text paraphrase dataset.
### Training Procedure
- **Tokenizer**: MPNetTokenizer
- **Batch Size**: 16
- **Optimizer**: AdamW
- **Loss Function**: Cross-entropy
#### Training Hyperparameters
- **Learning Rate**: 2e-5
- **Sequence Length**:
- MRPC: 256
- QQP: 336
- PIT: 64
- PAWS-X: 256
#### Speeds, Sizes, Times
- **GPU Used**: NVIDIA A100
- **Total Training Time**: ~6 hours
- **Compute Units Used**: 80
### Testing Data, Factors & Metrics
#### Testing Data
The model was tested on combined test sets and evaluated on:
- Accuracy
- Precision
- Recall
- F1-Score
- Runtime
### Results
## **MPNet Model Evaluation Metrics**
| Model | Dataset | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Runtime (sec) |
|---------|------------|-------------|--------------|------------|-------------|---------------|
| MPNet | MRPC Validation | 87.01 | 86.45 | 96.06 | 91.00 | 5.79 |
| MPNet | MRPC Test | 86.03 | 85.56 | 95.03 | 90.05 | 24.75 |
| MPNet | QQP Validation | 89.04 | 82.34 | 89.26 | 85.66 | 7.30 |
| MPNet | QQP Test | 88.98 | 82.95 | 88.65 | 85.70 | 17.77 |
| MPNet | PAWS-X Validation | 95.15 | 92.94 | 96.06 | 94.47 | 7.66 |
| MPNet | PAWS-X Test | 95.35 | 93.39 | 96.58 | 94.96 | 7.75 |
| MPNet | PIT Validation | 83.92 | 81.70 | 70.48 | 75.68 | 7.50 |
| MPNet | PIT Test | 89.50 | 75.74 | 73.14 | 74.42 | 1.57 |
### Summary
This **MPNet-based Paraphrase Detection Model** has been fine-tuned on four benchmark datasets: **MRPC, QQP, PAWS-X, and PIT**, enabling **fast and efficient paraphrase detection** across diverse linguistic structures. The model offers superior inference speed while maintaining high accuracy, making it ideal for applications requiring real-time **semantic similarity analysis and duplicate detection**.
### **Citation**
If you use this model, please cite:
```bibtex
@inproceedings{viswadarshan2025paraphrase,
title={Comparative Insights into Modern Architectures for Paraphrase Detection},
author={Viswadarshan R R, Viswaa Selvam S, Felcia Lilian J, Mahalakshmi S},
booktitle={International Conference on Computational Intelligence, Data Science, and Security (ICCIDS)},
year={2025},
publisher={IFIP AICT Series by Springer}
}
```
## Model Card Contact
📧 Email: [email protected]
🔗 GitHub: [Viswadarshan R R](https://github.com/viswadarshan-024) |