# NT DNA Model This is the DNA component of a jointly trained NT-ESM2 model pair for DNA-protein analysis. ## Model Details - **Model Type**: Nucleotide Transformer (NT) for DNA sequences - **Training**: Jointly trained with ESM2 protein model - **Architecture**: Transformer-based language model for DNA ## Usage ```python from transformers import AutoModel, AutoTokenizer # Load model and tokenizer model = AutoModel.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna") tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna") # Example usage dna_sequence = "ATCGATCGATCG" inputs = tokenizer(dna_sequence, return_tensors="pt") outputs = model(**inputs) ``` ## Training Details - Jointly trained with protein sequences for cross-modal understanding - Batch size: 8 (based on directory name) - Context length: 4096 tokens - Transcript-specific coding sequences ## Files - `config.json`: Model configuration - `model.safetensors`: Model weights - `tokenizer_config.json`: Tokenizer configuration - `vocab.txt`: Vocabulary file - `special_tokens_map.json`: Special tokens mapping ## Citation If you use this model, please cite the original NT paper and your joint training work.