Chua, Vui Seng
commited on
Commit
路
ffc90e9
1
Parent(s):
c67533a
Add collaterals
Browse files- README.md +67 -0
- config.json +115 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers.
|
2 |
+
```
|
3 |
+
eval_exact_match = 78.5241
|
4 |
+
eval_f1 = 86.4138
|
5 |
+
eval_samples = 10784
|
6 |
+
```
|
7 |
+
This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified).
|
8 |
+
To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 2.
|
9 |
+
|
10 |
+
# Eval
|
11 |
+
The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13
|
12 |
+
```bash
|
13 |
+
export CUDA_VISIBLE_DEVICES=0
|
14 |
+
|
15 |
+
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid
|
16 |
+
WORKDIR=transformers/examples/pytorch/question-answering
|
17 |
+
cd $WORKDIR
|
18 |
+
|
19 |
+
nohup python run_qa.py \
|
20 |
+
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
|
21 |
+
--dataset_name squad \
|
22 |
+
--do_eval \
|
23 |
+
--per_device_eval_batch_size 16 \
|
24 |
+
--max_seq_length 384 \
|
25 |
+
--doc_stride 128 \
|
26 |
+
--overwrite_output_dir \
|
27 |
+
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
|
28 |
+
```
|
29 |
+
|
30 |
+
If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below.
|
31 |
+
```bash
|
32 |
+
# OpenVINO/NNCF
|
33 |
+
git clone https://github.com/vuiseng9/nncf && cd nncf
|
34 |
+
git checkout tld-poc
|
35 |
+
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
|
36 |
+
python setup.py develop
|
37 |
+
|
38 |
+
# Huggingface Transformers
|
39 |
+
git clone https://github.com/vuiseng9/transformers && cd transformers
|
40 |
+
git checkout tld-poc
|
41 |
+
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
|
42 |
+
pip install -e .
|
43 |
+
|
44 |
+
# Huggingface nn_pruning
|
45 |
+
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
|
46 |
+
git checkout reproduce-evaluation
|
47 |
+
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
|
48 |
+
```
|
49 |
+
Add ```--optimize_model_before_eval``` during evaluation.
|
50 |
+
```bash
|
51 |
+
export CUDA_VISIBLE_DEVICES=0
|
52 |
+
|
53 |
+
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped
|
54 |
+
WORKDIR=transformers/examples/pytorch/question-answering
|
55 |
+
cd $WORKDIR
|
56 |
+
|
57 |
+
nohup python run_qa.py \
|
58 |
+
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
|
59 |
+
--dataset_name squad \
|
60 |
+
--optimize_model_before_eval \
|
61 |
+
--do_eval \
|
62 |
+
--per_device_eval_batch_size 16 \
|
63 |
+
--max_seq_length 384 \
|
64 |
+
--doc_stride 128 \
|
65 |
+
--overwrite_output_dir \
|
66 |
+
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
|
67 |
+
```
|
config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForQuestionAnswering"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"pruned_heads": {
|
22 |
+
"0": [
|
23 |
+
0,
|
24 |
+
2,
|
25 |
+
4,
|
26 |
+
5,
|
27 |
+
6,
|
28 |
+
7,
|
29 |
+
11
|
30 |
+
],
|
31 |
+
"1": [
|
32 |
+
0,
|
33 |
+
2,
|
34 |
+
3,
|
35 |
+
5,
|
36 |
+
6,
|
37 |
+
7,
|
38 |
+
8
|
39 |
+
],
|
40 |
+
"2": [
|
41 |
+
8,
|
42 |
+
4,
|
43 |
+
7
|
44 |
+
],
|
45 |
+
"3": [
|
46 |
+
2,
|
47 |
+
4,
|
48 |
+
6
|
49 |
+
],
|
50 |
+
"4": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
11
|
54 |
+
],
|
55 |
+
"5": [
|
56 |
+
1,
|
57 |
+
2,
|
58 |
+
5,
|
59 |
+
6,
|
60 |
+
7,
|
61 |
+
11
|
62 |
+
],
|
63 |
+
"6": [
|
64 |
+
0,
|
65 |
+
2,
|
66 |
+
3,
|
67 |
+
7,
|
68 |
+
10
|
69 |
+
],
|
70 |
+
"7": [
|
71 |
+
1,
|
72 |
+
3,
|
73 |
+
6,
|
74 |
+
7,
|
75 |
+
11
|
76 |
+
],
|
77 |
+
"8": [
|
78 |
+
0,
|
79 |
+
3,
|
80 |
+
4,
|
81 |
+
5,
|
82 |
+
8
|
83 |
+
],
|
84 |
+
"9": [
|
85 |
+
1,
|
86 |
+
3,
|
87 |
+
4,
|
88 |
+
5,
|
89 |
+
7,
|
90 |
+
9,
|
91 |
+
10
|
92 |
+
],
|
93 |
+
"10": [
|
94 |
+
1,
|
95 |
+
4,
|
96 |
+
5,
|
97 |
+
6,
|
98 |
+
7,
|
99 |
+
8
|
100 |
+
],
|
101 |
+
"11": [
|
102 |
+
4,
|
103 |
+
5,
|
104 |
+
7,
|
105 |
+
8,
|
106 |
+
10,
|
107 |
+
11
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.10.3",
|
112 |
+
"type_vocab_size": 2,
|
113 |
+
"use_cache": true,
|
114 |
+
"vocab_size": 30522
|
115 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:895559c3ab4ac710f1747e5a3d2b5a45fa34edc8975bd9843f3d5960588f05b6
|
3 |
+
size 386062513
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-uncased", "tokenizer_class": "BertTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8baa4f88c06c0a3ab896b378e9ac834751b6b68df585f523ea3489516f5fecd
|
3 |
+
size 2927
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|