Upload TFViTForImageClassification
Browse files- README.md +49 -0
- config.json +32 -0
- tf_model.h5 +3 -0
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_keras_callback
|
6 |
+
model-index:
|
7 |
+
- name: platzi-vit-model-wgcv
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
12 |
+
probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# platzi-vit-model-wgcv
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4136, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
|
38 |
+
- training_precision: float32
|
39 |
+
|
40 |
+
### Training results
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
### Framework versions
|
45 |
+
|
46 |
+
- Transformers 4.41.2
|
47 |
+
- TensorFlow 2.15.0
|
48 |
+
- Datasets 2.20.0
|
49 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-base-patch16-224-in21k",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "angular_leaf_spot",
|
13 |
+
"1": "bean_rust",
|
14 |
+
"2": "healthy"
|
15 |
+
},
|
16 |
+
"image_size": 224,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"angular_leaf_spot": "0",
|
21 |
+
"bean_rust": "1",
|
22 |
+
"healthy": "2"
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"model_type": "vit",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_channels": 3,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"patch_size": 16,
|
30 |
+
"qkv_bias": true,
|
31 |
+
"transformers_version": "4.41.2"
|
32 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09c4b09ff687463ad3a1d000eb9eb2e0182fee97681f729ec28b13a8e48ba7e1
|
3 |
+
size 343489208
|