File size: 3,132 Bytes
8195a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c444e
 
 
 
 
 
8195a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c444e
8195a99
 
 
 
 
c6c444e
 
 
 
 
 
 
 
 
 
8195a99
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
language:
- id
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- speaker-segmentation
model-index:
- name: speaker-segmentation-fine-tuned-datasetID-hugging_2_4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speaker-segmentation-fine-tuned-datasetID-hugging_2_4

This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the speaker-segmentation dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3735
- Model Preparation Time: 0.0099
- Der: 0.1228
- False Alarm: 0.0205
- Missed Detection: 0.0096
- Confusion: 0.0927

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 43
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der    | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.4492        | 1.0   | 570  | 0.4525          | 0.0099                 | 0.1515 | 0.0219      | 0.0094           | 0.1202    |
| 0.3875        | 2.0   | 1140 | 0.4229          | 0.0099                 | 0.1403 | 0.0212      | 0.0098           | 0.1093    |
| 0.4014        | 3.0   | 1710 | 0.3889          | 0.0099                 | 0.1324 | 0.0207      | 0.0102           | 0.1016    |
| 0.3656        | 4.0   | 2280 | 0.3899          | 0.0099                 | 0.1305 | 0.0212      | 0.0094           | 0.1000    |
| 0.3232        | 5.0   | 2850 | 0.3804          | 0.0099                 | 0.1283 | 0.0207      | 0.0096           | 0.0981    |
| 0.319         | 6.0   | 3420 | 0.3796          | 0.0099                 | 0.1256 | 0.0204      | 0.0097           | 0.0956    |
| 0.3018        | 7.0   | 3990 | 0.3750          | 0.0099                 | 0.1247 | 0.0202      | 0.0101           | 0.0945    |
| 0.2928        | 8.0   | 4560 | 0.3700          | 0.0099                 | 0.1220 | 0.0203      | 0.0097           | 0.0920    |
| 0.3321        | 9.0   | 5130 | 0.3753          | 0.0099                 | 0.1238 | 0.0204      | 0.0098           | 0.0936    |
| 0.2738        | 10.0  | 5700 | 0.3735          | 0.0099                 | 0.1228 | 0.0205      | 0.0096           | 0.0927    |


### Framework versions

- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1