File size: 4,134 Bytes
4581d9e
 
 
 
 
 
 
 
 
 
 
8507bcf
4581d9e
 
 
 
 
 
8507bcf
4581d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: finerweb-binary-classifier-xlmr-gemma3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finerweb-binary-classifier-xlmr-gemma3

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1484
- Precision: 0.7851
- Recall: 0.7983
- F1 Macro: 0.7913
- Accuracy: 0.8438

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
| No log        | 0       | 0     | 0.2350          | 0.3796    | 0.5    | 0.4316   | 0.7593   |
| 0.1059        | 0.7812  | 1000  | 0.1000          | 0.8077    | 0.7659 | 0.7830   | 0.8517   |
| 0.0825        | 1.5625  | 2000  | 0.0995          | 0.8129    | 0.7662 | 0.7850   | 0.8540   |
| 0.0563        | 2.3438  | 3000  | 0.1118          | 0.7910    | 0.8195 | 0.8031   | 0.8488   |
| 0.0315        | 3.125   | 4000  | 0.1183          | 0.8049    | 0.7861 | 0.7947   | 0.8545   |
| 0.0359        | 3.9062  | 5000  | 0.1234          | 0.8174    | 0.7528 | 0.7766   | 0.8524   |
| 0.0213        | 4.6875  | 6000  | 0.1431          | 0.7791    | 0.8259 | 0.7960   | 0.8374   |
| 0.0162        | 5.4688  | 7000  | 0.1312          | 0.7904    | 0.8026 | 0.7961   | 0.8478   |
| 0.0111        | 6.25    | 8000  | 0.1509          | 0.7817    | 0.8155 | 0.7955   | 0.8411   |
| 0.013         | 7.0312  | 9000  | 0.1242          | 0.7998    | 0.7994 | 0.7996   | 0.8536   |
| 0.0135        | 7.8125  | 10000 | 0.1292          | 0.8162    | 0.7570 | 0.7794   | 0.8530   |
| 0.0094        | 8.5938  | 11000 | 0.1463          | 0.7814    | 0.8172 | 0.7957   | 0.8406   |
| 0.0063        | 9.375   | 12000 | 0.1427          | 0.7799    | 0.8202 | 0.7954   | 0.8390   |
| 0.0082        | 10.1562 | 13000 | 0.1369          | 0.7838    | 0.8082 | 0.7944   | 0.8430   |
| 0.0081        | 10.9375 | 14000 | 0.1390          | 0.7880    | 0.7840 | 0.7859   | 0.8446   |
| 0.0058        | 11.7188 | 15000 | 0.1421          | 0.7833    | 0.8072 | 0.7937   | 0.8426   |
| 0.0061        | 12.5    | 16000 | 0.1580          | 0.7646    | 0.8190 | 0.7819   | 0.8225   |
| 0.005         | 13.2812 | 17000 | 0.1414          | 0.7924    | 0.7963 | 0.7943   | 0.8486   |
| 0.0031        | 14.0625 | 18000 | 0.1403          | 0.7935    | 0.8052 | 0.7990   | 0.8501   |
| 0.0032        | 14.8438 | 19000 | 0.1412          | 0.7958    | 0.7873 | 0.7914   | 0.8496   |
| 0.0046        | 15.625  | 20000 | 0.1458          | 0.7852    | 0.8119 | 0.7967   | 0.8441   |
| 0.0027        | 16.4062 | 21000 | 0.1490          | 0.7832    | 0.8115 | 0.7952   | 0.8425   |
| 0.0025        | 17.1875 | 22000 | 0.1442          | 0.7886    | 0.7995 | 0.7938   | 0.8463   |
| 0.0025        | 17.9688 | 23000 | 0.1431          | 0.7962    | 0.7811 | 0.7881   | 0.8490   |
| 0.0017        | 18.75   | 24000 | 0.1496          | 0.7834    | 0.8036 | 0.7925   | 0.8427   |
| 0.0022        | 19.5312 | 25000 | 0.1484          | 0.7851    | 0.7983 | 0.7913   | 0.8438   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1